Abstract:
A method for selectively processing a surface tension of a solder mask layer in a circuit board is provided. The method conducts surface tension processing to the flip-chip area and the non-flip-chip area of the solder mask layer in the circuit board. Therefore, the underfill used in packaging configures relative contact angles at the flip-chip area and the non-flip-chip area of the solder mask layer, respectively. In such a way, the present invention is adapted to solve the difficulties of the underfill void bulb and the overflowing contamination at the same time.
Abstract:
A package structure preventing solder overflow on substrate solder pads includes a plurality of die pins, a plurality of solders and a plurality of substrate solder pads. The die pins are located under a die. The substrate solder pads are formed on an upper surface of a substrate by copper plating or etching. Each of the substrate solder pads has at least one solder pad connection point. The solders connect the die pins with the corresponding solder pad connection points, respectively. Each of the solder pad connection points has a pair of solder pad ridges or a pair of solder pad grooves. The solder pad ridges and the solder pad grooves filled with the solder or a resin can prevent the solder overflow problem.
Abstract:
A method of manufacturing a laminate circuit board is disclosed. The method includes forming a metal layer on a substrate, patterning the metal layer to form a circuit metal layer, forming a nanometer plating layer with a thickness of 5 to 40 nm over the circuit metal layer, and forming a cover layer covering the substrate and the nanometer plating layer with improved adhesion by chemical bonding to form the laminate circuit board. Another method includes forming the circuit metal layer and the nanometer plating layer on a preforming substrate, pressing the preforming substrate against a substrate to push the circuit metal layer and the nanometer plating layer into the substrate, and removing the preforming substrate. By the present invention, the density of circuit is increased and much denser circuit can be implemented on the substrate with the same area.
Abstract:
A method for fabricating a carrier board having no conduction line is provided. The fabricating method includes: providing a support plate having a detachable metal layer; providing a plating current via the support plate and the detachable metal layer to plate on the detachable metal layer to in sequence configure an etching resist layer and a plating metal layer; and then gradually completing other circuit layers by a compression laminating process with the support plate providing the plating current. After the entire plating process has been completed, the support plate and the detachable metal layer are removed.
Abstract:
A solder pad structure with a high bondability to a solder ball is provided. The present invention provides a larger contact area with the solder ball so as to increase the bondability according to the principle that the bondability is positive proportional with the contact area therebetween. The solder pad structure includes a circuit board having a solder pad opening defined by a solder resist layer surrounding a circuit layer. The circuit layer within the solder pad opening is defined as a solder pad. In such a way, after filling the solder ball into the solder pad opening, besides walls of the solder pad opening, there are an extra contact area provided by a geometric shape of the solder pad for further improving the bondability of the solder pad and the solder ball.
Abstract:
A laminate circuit board structure from button up including a substrate, a circuit metal layer, a nanometer plating layer and a cover layer is disclosed. The nanometer plating layer is smooth a thickness of 5-40 nm, and can be directly forming on the outer surface of the circuit metal layer or manufactured by firstly forming the nanometer plating layer on a preforming substrate, then pressing the substrate against the nanometer plating layer, and finally removing the preforming substrate. The junction adhesion between the nanometer plating layer and the cover layer or the substrate is improved by chemical bonding. Therefore it does not need to roughen the circuit metal layer or reserve circuit width for compensation such that the density of the circuit increases and much more dense circuit can be implemented in the substrate with the same area.
Abstract:
A flip-chip (FC) package structure is provided. The FC package structure includes a substrate, a chip, a plurality of copper platforms, a plurality of copper bumps, a plating layer, a circuit layer and a solder mask layer. The copper bumps are disposed on the substrate. The copper platforms are stacked on the copper bumps. The plating layer covers the copper bumps and the copper platforms, for contacting with chip foot pads configured at a bottom of the chip. The FC package structure does not need to reserve a space for wire bonding, thus saving the area of the substrate. The copper platforms are stacked on the copper bumps, and are higher than the circuit pattern layer. Therefore, the chip is blocked up, and the gap between the chip and the substrate is enlarged, thus preventing the risk of configuring voids when filling the cladding material and improving the packaging yield.
Abstract:
A solder pad structure with a high bondability to a solder ball is provided. The present invention provides a larger contact area with the solder ball so as to increase the bondability according to the principle that the bondability is positive proportional with the contact area therebetween. The solder pad structure includes a circuit board having a solder pad opening defined by a solder resist layer surrounding a circuit layer. The circuit layer within the solder pad opening is defined as a solder pad. In such a way, after filling the solder ball into the solder pad opening, besides walls of the solder pad opening, there is an extra contact area provided by a geometric shape of the solder pad for further improving the bondability of the solder pad and the solder ball.
Abstract:
A carrier substrate and a method for manufacturing the carrier substrate are disclosed herein. The method includes the steps of: providing a core substrate; forming a build-up material layer on the core substrate; forming a via in the build-up material layer; forming a patterned photoresist layer on the build-up material layer covering a portion of the via and exposing an opening from uncovered portion of the via, and a wiring slot connected to the opening; and forming a metal-electroplated layer on the via and the wiring slot. In forming a trace according to the present invention, the metal-electroplated layer is formed as the trace and directly connected to the via, striding or not striding over the via. Additionally, in the carrier substrate structure, there is no need an annular ring to connect the trace to the via, and thus the wiring space is increased.
Abstract:
A method for selectively processing a surface tension of a solder mask layer in a circuit board is provided. The method conducts surface tension processing to the flip-chip area and the non-flip-chip area of the solder mask layer in the circuit board. Therefore, the underfill used in packaging configures relative contact angles at the flip-chip area and the non-flip-chip area of the solder mask layer, respectively. In such a way, the present invention is adapted to solve the difficulties of the underfill void bulb and the overflowing contamination at the same time.