摘要:
A tunable high impedance surface device (100) includes a conductive ground plane (105) and a plurality of conductive elements (110-114) electrically connected to the conductive ground plane (105). The device (100) also includes a plurality of capacitive elements (120-124) operable to vary a predetermined electromagnetic characteristic of the apparatus and standoffs (130, 132) between the plurality of capacitive elements (120-124) and the plurality of conductive elements (110-114). In one form, laser-drilled and electrically conductive micro-vias (136, 138) extend through the standoffs (130, 132) thereby electrically connecting the plurality of capacitive elements (120-124) to a data bus (140). The capacitive elements (120-124) may be integral with a circuit board (144) that supports the plurality conductive elements (110-114). Either the capacitive elements (120-124) or the conductive elements (110-114) are mechanically flexible and selectively movable to controllably adjust the distance (142) between the capacitive and conductive elements.
摘要:
A tunable high impedance surface device (100) includes a conductive ground plane (105) and a plurality of conductive elements (110-114) electrically connected to the conductive ground plane (105). The device (100) also includes a plurality of capacitive elements (120-124) operable to vary a predetermined electromagnetic characteristic of the apparatus and standoffs (130, 132) between the plurality of capacitive elements (120-124) and the plurality of conductive elements (110-114). In one form, laser-drilled and electrically conductive micro-vias (136, 138) extend through the standoffs (130, 132) thereby electrically connecting the plurality of capacitive elements (120-124) to a data bus (140). The capacitive elements (120-124) may be integral with a circuit board (144) that supports the plurality conductive elements (110-114). Either the capacitive elements (120-124) or the conductive elements (110-114) are mechanically flexible and selectively movable to controllably adjust the distance (142) between the capacitive and conductive elements.
摘要:
A textured dielectric patch antenna is fabricated by applying a first mask pattern (310, 510, 610, 710, 915, 1015, 1210) to a first side of a solid panel made of a first material that is a ceramic dielectric and then sandblasting the solid panel through the first mask pattern from the first side to at least partially generate a shaped cavity (315, 920, 1040). The shaped cavity of the solid panel may be filled with a second material (330, 740). The first and second materials have substantially differing dielectric constants. The first side and second side of the solid panel are metallized (325), forming a patch antenna. The shaped cavities can be made more complex by using additional masking and/or sandblasting steps.
摘要:
A method for forming embedded capacitors on a printed circuit board is disclosed. The capacitor is formed on the printed circuit board by a depositing a first dielectric layer over one or more electrodes situated on the PCB. Another electrode is formed on top of the first dielectric layer and a second dielectric layer is deposited on top of that electrode. A third electrode is formed on top of the second dielectric layer. The two dielectric layers are abrasively delineated in a single step by a method such as sand blasting to define portions of the first and second dielectric layers to create a multilayer capacitive structure.
摘要:
A dielectric circuit board foil (400, 600) includes a conductive metal foil layer (210, 660), a crystallized dielectric oxide layer (405, 655) disposed adjacent a first surface of the conductive metal foil layer, a lanthanum nickelate layer (414, 664) disposed on the crystallized dielectric oxide layer, and an electrode layer (415, 665) that is substantially made of one or more base metals disposed on the lanthanum nickelate layer. The foil (400, 600) may be adhered to a printed circuit board sub-structure (700) and used to economically fabricate a plurality of embedded capacitors, including isolated capacitors of large capacitive density (>1000 pf/mm2).
摘要翻译:电介质电路板箔(400,600)包括导电金属箔层(210,660),邻近导电金属箔层的第一表面设置的结晶介电氧化物层(405,655),镍酸镧层(414) ,664)和基本上由设置在镍酸镧层上的一种或多种贱金属制成的电极层(415,665)。 箔(400,600)可以粘附到印刷电路板子结构(700)上,并用于经济地制造多个嵌入式电容器,包括具有大电容密度(> 1000pf / mm 2)的隔离电容器, / SUP>)。
摘要:
A method for manufacturing a microelectronic assembly to have a resistor, and particularly a metal resistive film, with desirable processing and dimensional characteristics. The method generally entails applying a photosensitive dielectric to a substrate to form a dielectric layer. The dielectric layer is photoimaged to polymerize a first portion of the dielectric layer on a first region of the substrate, leaving the remainder of the dielectric layer unpolymerized. An electrically resistive film is then applied to the dielectric layer, and the dielectric layer is developed to remove concurrently the unpolymerized portion thereof and the portion of the resistive film overlying the unpolymerized portion, so that a portion of the resistive film remains over the second portion to form the resistor. An alternative process order is to apply the resistive film prior to exposing the dielectric layer to radiation, and then exposing the dielectric layer through the resistive film. The resistive film is preferably a multilayer film that includes an electrically resistive layer, such as NiP, NiCr or another nickel-containing alloy, and a sacrificial backing such as a layer of copper.
摘要:
Fabricating (100, 1300) a printed circuit board includes fabricating patterned conductive traces (305, 310, 1410, 1415) onto a foil, laminating the patterned conductive traces to a printed circuit board substrate (405, 1505) by pressing on the foil, such that the conductive traces are pressed into a dielectric layer of the printed circuit board, and removing the foil to expose a co-planar surface of conductive trace surfaces and dielectric surfaces. Removal may be done by peeling (125) and/or etching (130, 1315).
摘要:
A dielectric film is formed on a free-standing conductive metal layer to form a multi-layer foil comprising a conductive metal layer, a barrier layer and a dielectric oxide layer. Such multi-layer foils are mechanically flexible, and useful for the manufacture of capacitors. Examples of barrier layers include Ni—P or Ni—Cr alloys. After a second layer of conductive metal is deposited on a dielectric oxide surface opposing the first conductive metal layer, the resulting capacitor foil is processed into a capacitor. The resulting capacitor is a surface mounted capacitor or is formed as a integrated or embedded capacitor within a circuit board.
摘要:
A dielectric film is formed on a free-standing conductive metal layer to form a multi-layer foil comprising a conductive metal layer, a barrier layer and a dielectric oxide layer. Such multi-layer foils are mechanically flexible, and useful for the manufacture of capacitors. Examples of barrier layers include Ni—P or Ni—Cr alloys. After a second layer of conductive metal is deposited on a dielectric oxide surface opposing the first conductive metal layer, the resulting capacitor foil is processed into a capacitor. The resulting capacitor is a surface mounted capacitor or is formed as a integrated or embedded capacitor within a circuit board.
摘要:
A method for fabricating circuit board conductors with desirable processing and reduced self and mutual capacitance. The method generally entails forming a metal layer on a positive-acting photodielectric layer formed on a substrate, and then etching the metal layer to form at least two conductor traces that cover two separate regions of the photodielectric layer while exposing a third region of the photodielectric layer between the two regions. The third region of the photodielectric layer is then irradiated and developed using the two traces as a photomask, so that the third region of the photodielectric layer is removed. The two remaining regions of the photodielectric layer masked by the traces remain on the substrate and are separated by an opening formed by the removal of the third dielectric region. As a result, the traces are not only separated by a void immediately therebetween formed when the metal layer was etched, but are also separated by the opening formed in the photodielectric layer by the removal of the third region of the photodielectric layer. Traces formed in accordance with the above may be formed as adjacent and parallel conductors or adjacent inductor windings of an integral inductor.