摘要:
The present invention relates to trehalose phosphorylases which are useful for the industrial production of trehalose-analogues and glycosyl phosphates. More specifically, the invention discloses trehalose phosphorylases which are mutated in specific amino acid regions. These specific mutations result in modified substrate specificities of the enzymes. In addition, the present invention discloses a wild type trehalose phosphorylase from the marine organism Caldanaerobacter subterraneus, and mutated types thereof, which are highly thermostable and have a broad acceptor and donor specificity.
摘要:
The present invention relates to trehalose phosphorylases which are useful for the industrial production of trehalose-analogs and glycosyl phosphates. More specifically, the invention discloses trehalose phosphorylases which are mutated in specific amino acid regions. These specific mutations result in modified substrate specificities of the enzymes. In addition, the present invention discloses a wild type trehalose phosphorylase from the marine organism Caldanaerobacter subterraneus, and mutated types thereof, which are highly thermostable and have a broad acceptor and donor specificity.
摘要:
An in vitro method to produce a glycoside is described which includes the steps of contacting the cellodextrin phosphorylase from Clostridium stercorarium with alpha-glucose-1-phosphate or alpha-galactose-1-phosphate and an acceptor, and glycosylating the acceptor. The acceptor may be an alkyl beta-glucoside, an aryl beta-glucoside, a glucolipid, an alkyl beta-sophoroside, an aryl beta-sophoroside or a sophorolipid. Alkylcellobiosides, arylcellobiosides, cellobiolipids, cellotriolipids, glucosophorolipids and cellobiosesophorolipids are produced when alpha-glucose-1-phosphate is used as donor. Corresponding lactosides are produced when alpha-galactose-1-phosphate is used as donor.
摘要:
The present invention relates to a sucrose phosphorylase from Bifidobacterium adolescentis which is useful as a biocatalyst in carbohydrate conversions at high temperatures. Indeed, the biocatalysts of the present invention are enzymatically active for a time period of at least 16 h and up to 1 to 2 week(s) at a temperature of at least 60° C. The biocatalysts of the present invention are: a) immobilized on an enzyme carrier, or b) are part of a cross-linked enzyme aggregate (CLEA), and/or c) are mutated, and/or d) are enzymatically active in the continuous presence of their substrate.
摘要:
The present invention relates to the biocatalytic production of glycosides. In particular, the invention discloses a method to produce alkylcellobiosides, arylcellobiosides, cellobiolipids, cellotriolipids, glucosophorolipids and cellobiosesophorolipids via the usage of a cellodextrin phosphorylase (CDP) derived from Clostridium stercorarium (CsCDP). The method of the present invention is feasible for use in industrial glycosylation processes and has advantageous properties compared to classical as chemical glycosylation reactions. Moreover, said method can also be employed to produce corresponding lactosides such a lactolipids when a-galactose-1-phosphate instead of a-glucose-1-phosphate is used as a donor.
摘要:
The present invention relates to novel lactose phosphorylase enzymes and the uses thereof. More specifically, the invention relates to lactose phosphorylase enzymes created by mutation of a cellobiose phosphorylase from Cellulomonas uda. By introducing mutations in this enzyme, the activity can be switched from cellobiose phosphorylase into lactose phosphorylase.
摘要:
The present invention relates to novel lactose phosphorylase enzymes and the uses thereof. More specifically, the invention relates to lactose phosphorylase enzymes created by mutation of a cellobiose phosphorylase from Cellulomonas uda. By introducing mutations in this enzyme, the activity can be switched from cellobiose phosphorylase into lactose phosphorylase.
摘要:
The present invention relates to yeast species which are normally capable of producing sophorolipids but which are modified in such way that they are incapable producing the latter compounds. These sophorolipid-negative strains surprisingly display equal growth characteristics and biomass formation as their wild type counterparts and are hence useful for the production of compounds such as recombinant proteins, glycolipids, polyhydroxyalkanoates and carotenoides. In addition, the present invention discloses two glucosyltransferase genes with key-functions in sophorolipid production.
摘要:
The present invention relates to yeast species which are normally capable of producing sophorolipids but which are modified in such way that they are incapable producing the latter compounds. These sophorolipid-negative strains surprisingly display equal growth characteristics and biomass formation as their wild type counterparts and are hence useful for the production of compounds such as recombinant proteins, glycolipids, polyhydroxyalkanoates and carotenoides. In addition, the present invention discloses two glucosyltransferase genes with key-functions in sophorolipid production.
摘要:
The invention relates to a transporter protein involved in the transport of sophorolipids. More specifically, it relates to a Candida bombicola sophorolipid transporter protein, and the use of this transporter to modulate the secretion and/or production of glycolipids, preferably sophorolipids in organisms, preferably in fungi.