摘要:
A surface treated copper foil 1 includes a copper foil 2, and a first surface treatment layer 3 formed on one surface of the copper foil 2. The first surface treatment layer 3 of the surface treated copper foil 1 has a Ni deposited amount of 20 to 200 μg/dm2 and a Zn deposited amount of 20 to 1,000 μg/dm2. A copper clad laminate 10 includes the surface treated copper foil 1 and an insulating substrate 11 adhered to the first surface treatment layer 3 of the surface treated copper foil 1.
摘要:
Provided herein is a carrier-attached copper foil having desirable fine circuit formability. The carrier-attached copper foil includes a carrier, an interlayer, and an ultrathin copper layer in this order. The maximum ridge height Sp as measured with a laser microscope according to ISO 25178 on the surface of the carrier-attached copper foil on the side of the ultrathin copper layer is 0.193 to 3.082 μm.
摘要:
Provided herein is a carrier-attached copper foil having desirable laser drillability through an ultrathin copper layer, preferred for fabrication of a high-density integrated circuit substrate. The carrier-attached copper foil includes an interlayer and an ultrathin copper layer that are provided in this order on one or both surfaces of a carrier. The surface roughness Sz and the surface roughness Sa on the interlayer side of the ultrathin copper layer satisfy Sz≤3.6 μm, and Sz/Sa≤14.00 as measured with a laser microscope in case of detaching the carrier from the carrier-attached copper foil according to JIS C 6471 after the carrier-attached copper foil is laminated to an insulating substrate from the ultrathin copper layer side under a pressure of 20 kgf/cm2 and heated at 220° C. for 2 hours. GMD, which is a 60-degree glossiness of the ultrathin copper layer surface on the interlayer side in MD direction, satisfies GMD≤150 in case of detaching the carrier from the carrier-attached copper foil according to JIS C 6471 after the carrier-attached copper foil is laminated using the same procedure.
摘要:
The present invention provides a surface-treated copper foil capable of imparting the profile shape of the substrate surface after removal of the copper foil, the profile shape maintaining fine wiring formability and achieving satisfactory adhesion of electroless copper plating coating. The present invention also provides a resin substrate provided with a profile shape of the surface maintaining fine wiring formability and achieving satisfactory adhesion of electroless copper plating coating. The surface-treated copper foil of the present invention is a surface-treated copper foil having a surface-treated layer formed on a copper foil, and the surface roughness Sz of the surface of the surface-treated layer is 2 to 6 μm.
摘要:
A surface treated copper foil 1 includes a copper foil 2, and a first surface treatment layer 3 formed on one surface of the copper foil 2. The first surface treatment layer 3 of the surface treated copper foil 1 has a Ni concentration of 0.1 to 15.0 atm % based on the total amount of elements of C, N, O, Zn, Cr, Ni, Co, Si, and Cu, in an XPS depth profile obtained by performing sputtering at a sputtering rate of 2.5 nm/min (in terms of SiO2) for 1 minute. A copper clad laminate 10 includes the surface treated copper foil 1 and an insulating substrate 11 adhered to the first surface treatment layer 3 of the surface treated copper foil 1.
摘要:
A surface treated copper foil 1 includes a copper foil 2, and a first surface treatment layer 3 formed on one surface of the copper foil 2. The first surface treatment layer 3 of the surface treated copper foil 1 has a Ni concentration of 0.1 to 15.0 atm % based on the total amount of elements of C, N, O, Zn, Cr, Ni, Co, Si, and Cu, in an XPS depth profile obtained by performing sputtering at a sputtering rate of 2.5 nm/min (in terms of SiO2) for 1 minute. A copper clad laminate 10 includes the surface treated copper foil 1 and an insulating substrate 11 adhered to the first surface treatment layer 3 of the surface treated copper foil 1.
摘要:
Provided herein is a carrier-attached copper foil having desirable fine circuit formability. The carrier-attached copper foil includes a carrier, an interlayer, and an ultrathin copper layer in this order. The maximum ridge height Sp as measured with a laser microscope according to ISO 25178 on the surface of the carrier-attached copper foil on the side of the ultrathin copper layer is 0.193 to 3.082 μm.
摘要:
A surface treated copper foil 1 includes a copper foil 2, and a first surface treatment layer 3 formed on one surface of the copper foil 2. The first surface treatment layer 3 of the surface treated copper foil 1 has L* of a CIE L*a*b* color space of 44.0 to 84.0. A copper clad laminate 10 includes the surface treated copper foil 1 and an insulating substrate 11 adhered to a surface of the surface treated copper foil 1 opposite to the first surface treatment layer 3.
摘要:
A surface treated copper foil 1 includes a copper foil 2, and a first surface treatment layer 3 formed on one surface of the copper foil 2. The first surface treatment layer 3 of the surface treated copper foil 1 has a root mean square gradient of roughness curve elements RΔq according to JIS B0601:2013 of 5 to 28°. A copper clad laminate 10 includes the surface treated copper foil 1 and an insulating substrate 11 adhered to the first surface treatment layer 3 of the surface treated copper foil 1.
摘要:
A surface treated copper foil 1 includes a copper foil 2, and a first surface treatment layer 3 formed on one surface of the copper foil 2. The first surface treatment layer 3 of the surface treated copper foil 1 has a root mean square gradient of roughness curve elements RΔq according to JIS B0601:2013 of 5 to 28°. A copper clad laminate 10 includes the surface treated copper foil 1 and an insulating substrate 11 adhered to the first surface treatment layer 3 of the surface treated copper foil 1.