摘要:
An embodiment for user equipment that receives a plurality of measurement gap repetition patterns from a network. Each measurement gap repetition pattern may be assigned to a different frequency of the network. The plurality of measurement gap repetition patterns may include skipping measurement patterns. Further embodiments may include the user equipment receiving a repetition period in a measurement object frame or receiving a plurality of measurement gap repetition patterns in which the measurement gaps are non-colliding with measurement gaps of other repetition patterns assigned to the user equipment.
摘要:
Discontinuous reception (DRX) alignment techniques for dual-connectivity architectures are described. In one embodiment, for example, user equipment (UE) may comprise one or more radio frequency (RF) transceivers, one or more RF antennas, and logic, at least a portion of which is in hardware, the logic to receive a radio resource control (RRC) configuration information message containing a small cell RRC configuration information element (IE), the small cell RRC configuration IE to contain a small cell discontinuous reception (DRX) configuration IE comprising one or more inter-cell-coordinated small cell DRX parameters, the logic to determine a start time for a small cell DRX cycle based on at least one of the one or more inter-cell-coordinated small cell DRX parameters and initiate the small cell DRX cycle at the determined start time. Other embodiments are described and claimed.
摘要:
Embodiments of an evolved Node B (eNB) and methods for radio link failure handling for dual connectivity are generally described herein. A method performed by circuitry of a User Equipment (UE) may include connecting at a UE, to a Master eNB (M eNB) and connecting to a Secondary eNB (SeNB). The method may include determining at the UE, that one of the connections has a Radio Link Failure and determining at the UE, that the other of the connections remains connected to the UE. The method may include refraining from initiating a Radio Resource Control (RRC) re-establishment procedure while at least one of the connections does not have a radio link failure.
摘要:
A method for low overhead system information acquisition (LOSIA) is disclosed. The LOSIA method includes several techniques for transmitting common channels in a next generation Radio Access Technology (xRAT). Instead of transmitting system information in a periodic, static, cell-specific, wideband manner, the transmission is triggered by user equipment in an “on demand” manner. The LOSIA method allows the network to control the overhead, bandwidth, and periodicity, as well as other characteristics. The LOSIA method employs several different techniques to trigger the information upon which the network can act, for example, by transmitting different payloads depending on the received trigger.
摘要:
An apparatus configured to be employed within an evolved Node B (eNodeB) or within a User Equipment (UE) is disclosed. The apparatus includes control circuitry. The control circuitry is configured to configure a semi-persistent scheduling (SPS) configuration that accommodates short subframes. The short subframes have a transmit time interval (TTI) of less than duration of 1 legacy subframe (e.g., 1 ms). The SPS configuration is provided within a radio resource control (RRC) signaling.
摘要:
Embodiments of UE and methods for measurement of Reference Signal Received Quality (RSRQ) are generally described herein. The UE may be configured to determine an RSRQ of a serving cell and an RSRQ of a target cell based on an indicated RSRQ measurement type. The measurement type may be received as part of a measurement configuration Information Element (IE) that indicates a first or second RSRQ measurement type. For the first RSRQ measurement type, the RSRQ may be determined based on a Received Signal Strength Indicator (RSSI) over common reference signals (CRS). For the second RSRQ measurement type, the RSRQ may be determined based on an RSSI that is based on a received power of one or more Orthogonal Frequency Division Multiplexing (OFDM) symbols received at the UE.
摘要:
The periodic broadcasting of system information by an eNB is costly in terms of both spectrum and energy. Embodiments described herein more efficiently transmit system information and are particularly applicable to 5G deployment scenarios. In one embodiment, an LTE cell broadcasts system information to be used by a UE in initially connecting to a 5G cell, termed initial access system information. The 5G cell may then transmit system information upon request by a connected UE or when the system information is updated.
摘要:
An embodiment for user equipment that receives a plurality of measurement gap repetition patterns from a network. Each measurement gap repetition pattern may be assigned to a different frequency of the network. The plurality of measurement gap repetition patterns may include skipping measurement patterns. Further embodiments may include the user equipment receiving a repetition period in a measurement object frame or receiving a plurality of measurement gap repetition patterns in which the measurement gaps are non-colliding with measurement gaps of other repetition patterns assigned to the user equipment.
摘要:
A user equipment device (UE) comprises physical layer circuitry configured to transmit and receive radio frequency electrical signals with one or more nodes of a radio access network; and processing circuitry. The processing circuitry is configured to receive system information via the network, wherein the system information indicates cell specific priority and frequency priority; identify candidate cells that have a cell specific priority that is higher than a cell priority of the current serving cell, have a frequency priority that is higher than a frequency priority of a current serving frequency, and satisfy a cell suitability criterion; and determine a candidate cell from the identified candidate cells to replace the current serving cell for communicating with the network.
摘要:
Embodiments of user equipment (UE) and method for handover enhancement using a scaled time-to-trigger (TTT) and a time-of-stay are generally described herein. In some embodiments, the TTT is scaled based on at least one of a measured reference signal received quality (RSRQ) value of a serving cell and a time-of-stay in the serving cell.