Abstract:
Discontinuous reception (DRX) alignment techniques for dual-connectivity architectures are described. In one embodiment, for example, user equipment (UE) may comprise one or more radio frequency (RF) transceivers, one or more RF antennas, and logic, at least a portion of which is in hardware, the logic to receive a radio resource control (RRC) configuration information message containing a small cell RRC configuration information element (IE), the small cell RRC configuration IE to contain a small cell discontinuous reception (DRX) configuration IE comprising one or more inter-cell-coordinated small cell DRX parameters, the logic to determine a start time for a small cell DRX cycle based on at least one of the one or more inter-cell-coordinated small cell DRX parameters and initiate the small cell DRX cycle at the determined start time. Other embodiments are described and claimed.
Abstract:
Technology for communicating data to a user equipment (UE) is disclosed. Effective data rates may be identified, at a master evolved node B (MeNB), for the UE with respect to the MeNB and a secondary evolved node B (SeNB). A downlink split ratio for bearers of the MeNB and the SeNB to the UE may be determined based in part on the effective data rates for the UE. A first portion of data may be sent from the MeNB to the UE according to the downlink split ratio. A remaining portion of data may be sent from the MeNB to the UE via the SeNB according to the downlink split ratio, wherein the UE supports dual connectivity with the MeNB and the SeNB.
Abstract:
Technology for mitigating traffic congestion is disclosed. A master evolved node B (MeNB) can identify service data unit (SDU) packets that are dropped in a retransmission buffer of a packet data convergence protocol (PDCP) layer of the MeNB. The MeNB can create a list of packet data unit (PDU) packets that are dropped at the PDCP layer of the MeNB, wherein the PDU packets that are dropped are associated with the SDU packets. The MeNB can send the list of dropped PDU packets, from the PDCP layer of the MeNB to the PDCP layer of a user equipment (UE), to enable the UE to distinguish between delayed PDU packets and the dropped PDU packets.
Abstract:
Embodiments of User Equipment (UE) and methods to support reception of content for use by an application supported by a Port Control Protocol (PCP) client are disclosed herein. The UE may receive, from a PCP server, a first portion of video content for use by the application during a first time period. The UE may send a PCP update message that includes one or more mobility status parameters. The UE may receive a second portion of the video content for use by the application during a second time period. The first and second portions of the video content may be received from a first and a second mobility anchor, which may operate as relays for the PCP server. The second mobility anchor may be determined based on a referred IP prefix included in the PCP date update message.
Abstract:
Embodiments of User Equipment (UE) and methods for fast handover failure recovery in a 3GPP LTE network are generally described herein. In some embodiments, the UE may initiate handover (HO) failure recovery by transmission of a random-access channel (RACH) 2 message when both a radio-link failure (RLF) timer and a time-to trigger (TTT) timer are concurrently running. The RACH 2 message may be a message transmitted on a random-access channel for radio-resource control (RRC) connection re-establishment. The RLF timer may be activated as part of a radio-link monitoring (RLM) process based on radio-link conditions with a serving cell, and the TTT timer may have been activated as part of a HO process based on a measurement reporting event.
Abstract:
Embodiments described herein relate generally to a communication between a user equipment (“UE”) and a plurality of evolved Node Bs (“eNBs”). A UE may be adapted to operate in a dual connected mode on respective wireless cells provided by first and second eNBs. The UE may be adapted to estimate respective power headroom (“PHR”) values associated with simultaneous operation on the first and second wireless cells. The UE may cause the first and second PHR estimates to be transmitted to both the first and second eNBs. The first and second eNBs may use these estimates to compute respective uplink transmission powers for the UE. Other embodiments may be described and/or claimed.
Abstract:
Embodiments described herein relate generally to a communication between a user equipment (“UE”) and a plurality of evolved Node Bs (“eNBs”). A UE may be adapted to operate in a dual connected mode on respective wireless cells provided by first and second eNBs. The UE may be adapted to estimate respective power headroom (“PHR”) values associated with simultaneous operation on the first and second wireless cells. The UE may cause the first and second PHR estimates to be transmitted to both the first and second eNBs. The first and second eNBs may use these estimates to compute respective uplink transmission powers for the UE. Other embodiments may be described and/or claimed.
Abstract:
Discontinuous reception (DRX) alignment techniques for dual-connectivity architectures are described. In one embodiment, for example, user equipment (UE) may comprise one or more radio frequency (RF) transceivers, one or more RF antennas, and logic, at least a portion of which is in hardware, the logic to receive a radio resource control (RRC) configuration information message containing a small cell RRC configuration information element (IE), the small cell RRC configuration IE to contain a small cell discontinuous reception (DRX) configuration IE comprising one or more inter-cell-coordinated small cell DRX parameters, the logic to determine a start time for a small cell DRX cycle based on at least one of the one or more inter-cell-coordinated small cell DRX parameters and initiate the small cell DRX cycle at the determined start time. Other embodiments are described and claimed.
Abstract:
Technology for reducing packet transmissions is disclosed. A master evolved node B (MeNB) configured for dual connectivity can receive one or more acknowledgements (ACKs) from a user equipment (UE) indicating packets that were successfully received at the UE from a secondary evolved node B (SeNB). The MeNB can receive, from the SeNB, packet delivery information for the SeNB. The MeNB can receive an indication from the SeNB of an air-interface connection loss between the SeNB and the UE. The MeNB can identify remaining packets that were not sent from the SeNB to the UE based, in part, on the ACKs received from the UE and the packet delivery information received from the SeNB, wherein the remaining packets are not sent to the UE due to the connection loss between the SeNB and the UE. The MeNB can send the remaining packets from the MeNB to the UE.