Abstract:
Described herein are technologies related to an implementation of a time interleaved digital-to-time converter (DTC) topology to generate high frequency phase modulated local oscillator (LO) signals. A first and second DTC are connected to an oscillator where outputs of the two DTCs are combined to generate a phase modulated signal and the two DTCs have a frequency rate that is half the frequency rate of the phase modulated signal. The two DTCs can operate at a 50 percent or lower duty cycle.
Abstract:
An apparatus for regulating a supply voltage supplied from a voltage source to a load via a supply line is provided. The apparatus includes a control circuit configured to generate a control signal based on a difference between a value of the supply voltage and a nominal value of the supply voltage. Further, the apparatus includes a switch circuit configured to couple a charged capacitive element to the supply line based on the control signal.
Abstract:
An apparatus for a low-power radar detection (LPRD) receiver is proposed in this disclosure. The LPRD receiver comprises an analog-to-digital converter (ADC) circuit configured to receive an analog dynamic frequency selection (DFS) signal associated with a DFS channel in a DFS frequency band to generate a digital DFS signal. The ADC circuit comprises a finite impulse response (FIR) filter circuit configured to sample the analog DFS signal at an FIR sampling rate determined based on a predetermined frequency plan associated with the DFS frequency band to generate a sampled DFS signal; and an ADC conversion circuit configured to convert the sampled DFS signal to the digital DFS signal at an ADC conversion rate that is lower than the FIR sampling rate.
Abstract:
A phase interpolator is provided. The phase interpolator includes a plurality of first interpolation cells each configured to supply a first current to a common node of the phase interpolator. Further, the phase interpolator includes a plurality of second interpolation cells each configured to supply a second current to the common node. The second current is lower than the first current, wherein a sum of the plurality of second currents supplied to the common node by the plurality of second interpolation cells is substantially equal to the first current.
Abstract:
Systems, methods, and circuitries are disclosed for generating a desired signal from a received signal. In one example a signal cancellation system includes local oscillator (LO) downconverter circuitry, frequency offset (FO) signal estimation circuitry, and cancellation circuitry. The LO downconverter is configured to downconvert the received signal using an LO signal having an LO frequency to generate a downconverted received signal. The FO signal estimation circuitry includes FOLO generation circuitry configured to modify the LO signal to generate a FOLO signal having an offset frequency that is different from the LO frequency and FOLO downconverter circuitry configured to use the FOLO signal to downconvert a signal derived from the received signal to generate a downconverted FO signal. The cancellation circuitry is configured to cancel either the downconverted received signal or the downconverted FO signal from the received signal to generate the desired signal.
Abstract:
A phase interpolator is provided. The phase interpolator includes a plurality of first interpolation cells each configured to supply a first current to a common node of the phase interpolator. Further, the phase interpolator includes a plurality of second interpolation cells each configured to supply a second current to the common node. The second current is lower than the first current, wherein a sum of the plurality of second currents supplied to the common node by the plurality of second interpolation cells is substantially equal to the first current.
Abstract:
Embodiments of a reference path circuit and communication device are generally described herein. The reference path circuit may include an injection locked multiplier (ILM) and a group of one or more buffer amplifiers. The ILM may receive a sinusoidal reference signal from a reference oscillator at a reference frequency. The ILM may generate a sinusoidal ILM output signal at an ILM output frequency that is based on an integer multiple of the reference frequency. The integer multiple of the reference frequency may be within a locking range of the ILM that may be based on a resonant frequency of the ILM. The group of one or more buffer amplifiers may generate an output clock signal for input to the frequency synthesizer. The output clock signal may be based on a sign function of the ILM output signal.
Abstract:
Systems, methods, and circuitries are disclosed for generating a desired signal from a received signal. In one example a signal cancellation system includes local oscillator (LO) downconverter circuitry, frequency offset (FO) signal estimation circuitry, and cancellation circuitry. The LO downconverter is configured to downconvert the received signal using an LO signal having an LO frequency to generate a downconverted received signal. The FO signal estimation circuitry includes FOLO generation circuitry configured to modify the LO signal to generate a FOLO signal having an offset frequency that is different from the LO frequency and FOLO downconverter circuitry configured to use the FOLO signal to downconvert a signal derived from the received signal to generate a downconverted FO signal. The cancellation circuitry is configured to cancel either the downconverted received signal or the downconverted FO signal from the received signal to generate the desired signal.
Abstract:
An apparatus for a low-power radar detection (LPRD) receiver is proposed in this disclosure. The LPRD receiver comprises an analog-to-digital converter (ADC) circuit configured to receive an analog dynamic frequency selection (DFS) signal associated with a DFS channel in a DFS frequency band to generate a digital DFS signal. The ADC circuit comprises a finite impulse response (FIR) filter circuit configured to sample the analog DFS signal at an FIR sampling rate determined based on a predetermined frequency plan associated with the DFS frequency band to generate a sampled DFS signal; and an ADC conversion circuit configured to convert the sampled DFS signal to the digital DFS signal at an ADC conversion rate that is lower than the FIR sampling rate.