-
公开(公告)号:US12198221B2
公开(公告)日:2025-01-14
申请号:US18436494
申请日:2024-02-08
Applicant: Intel Corporation
Inventor: Prasoonkumar Surti , Narayan Srinivasa , Feng Chen , Joydeep Ray , Ben J. Ashbaugh , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Sara S. Baghsorkhi , Justin E. Gottschlich , Altug Koker , Nadathur Rajagopalan Satish , Farshad Akhbari , Dukhwan Kim , Wenyin Fu , Travis T. Schluessler , Josh B. Mastronarde , Linda L Hurd , John H. Feit , Jeffery S. Boles , Adam T. Lake , Karthik Vaidyanathan , Devan Burke , Subramaniam Maiyuran , Abhishek R. Appu
Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.
-
公开(公告)号:US11948224B2
公开(公告)日:2024-04-02
申请号:US17978573
申请日:2022-11-01
Applicant: Intel Corporation
Inventor: Elmoustapha Ould-Ahmed-Vall , Sara S. Baghsorkhi , Anbang Yao , Kevin Nealis , Xiaoming Chen , Altug Koker , Abhishek R. Appu , John C. Weast , Mike B. Macpherson , Dukhwan Kim , Linda L. Hurd , Ben J. Ashbaugh , Barath Lakshmanan , Liwei Ma , Joydeep Ray , Ping T. Tang , Michael S. Strickland
IPC: G06T1/20 , G06F3/14 , G06F7/483 , G06F9/30 , G06F9/38 , G06F9/50 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/08 , G06N3/084 , G06N20/00 , G06T1/60 , G06T15/00
CPC classification number: G06T1/20 , G06F7/483 , G06F9/30014 , G06F9/30185 , G06F9/3863 , G06F9/5044 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/084 , G06N20/00 , G06F3/14 , G06T1/60 , G06T15/005
Abstract: One embodiment provides an apparatus comprising a memory stack including multiple memory dies and a parallel processor including a plurality of multiprocessors. Each multiprocessor has a single instruction, multiple thread (SIMT) architecture, the parallel processor coupled to the memory stack via one or more memory interfaces. At least one multiprocessor comprises a multiply-accumulate circuit to perform multiply-accumulate operations on matrix data in a stage of a neural network implementation to produce a result matrix comprising a plurality of matrix data elements at a first precision, precision tracking logic to evaluate metrics associated with the matrix data elements and indicate if an optimization is to be performed for representing data at a second stage of the neural network implementation, and a numerical transform unit to dynamically perform a numerical transform operation on the matrix data elements based on the indication to produce transformed matrix data elements at a second precision.
-
公开(公告)号:US20240086356A1
公开(公告)日:2024-03-14
申请号:US18491474
申请日:2023-10-20
Applicant: Intel Corporation
Inventor: Joydeep Ray , Altug Koker , Varghese George , Mike Macpherson , Aravindh Anantaraman , Abhishek R. Appu , Elmoustapha Ould-Ahmed-Vall , Nicolas Galoppo von Borries , Ben J. Ashbaugh
IPC: G06F15/78 , G06F7/544 , G06F7/575 , G06F7/58 , G06F9/30 , G06F9/38 , G06F9/50 , G06F12/02 , G06F12/06 , G06F12/0802 , G06F12/0804 , G06F12/0811 , G06F12/0862 , G06F12/0866 , G06F12/0871 , G06F12/0875 , G06F12/0882 , G06F12/0888 , G06F12/0891 , G06F12/0893 , G06F12/0895 , G06F12/0897 , G06F12/1009 , G06F12/128 , G06F15/80 , G06F17/16 , G06F17/18 , G06T1/20 , G06T1/60 , H03M7/46
CPC classification number: G06F15/7839 , G06F7/5443 , G06F7/575 , G06F7/588 , G06F9/3001 , G06F9/30014 , G06F9/30036 , G06F9/3004 , G06F9/30043 , G06F9/30047 , G06F9/30065 , G06F9/30079 , G06F9/3887 , G06F9/5011 , G06F9/5077 , G06F12/0215 , G06F12/0238 , G06F12/0246 , G06F12/0607 , G06F12/0802 , G06F12/0804 , G06F12/0811 , G06F12/0862 , G06F12/0866 , G06F12/0871 , G06F12/0875 , G06F12/0882 , G06F12/0888 , G06F12/0891 , G06F12/0893 , G06F12/0895 , G06F12/0897 , G06F12/1009 , G06F12/128 , G06F15/8046 , G06F17/16 , G06F17/18 , G06T1/20 , G06T1/60 , H03M7/46 , G06T15/06
Abstract: Embodiments described herein provide techniques to facilitate instruction-based control of memory attributes. One embodiment provides a graphics processor comprising a processing resource, a memory device, a cache coupled with the processing resources and the memory, and circuitry to process a memory access message received from the processing resource. The memory access message enables access to data of the memory device. To process the memory access message, the circuitry is configured to determine one or more cache attributes that indicate whether the data should be read from or stored the cache. The cache attributes may be provided by the memory access message or stored in state data associated with the data to be accessed by the access message.
-
公开(公告)号:US20240054595A1
公开(公告)日:2024-02-15
申请号:US17884755
申请日:2022-08-10
Applicant: Intel Corporation
Inventor: Joydeep Ray , Vasanth Ranganathan , James Valerio , Jeffery S. Boles , Hema Chand Nalluri , Aditya Navale , Ben J. Ashbaugh , Michal Mrozek , Murali Ramadoss , Hong Jiang , Ankur Shah
CPC classification number: G06T1/20 , G06T1/60 , G06F9/3855
Abstract: Embodiments described herein provide a system of concurrent compute queues that enable the scheduling of a large number of compute contexts simultaneously on graphics processor hardware. One embodiment provides an apparatus comprising a system interface and a general-purpose graphics processor coupled with the system interface. The general-purpose graphics processor comprises a plurality of graphics processor hardware resources configured to be partitioned into a plurality of isolated partitions, each of the plurality of isolated partitions including a first command streamer, a second command streamer, and circuitry configured to schedule general-purpose graphics compute workloads submitted to a first plurality of command queues associated with the first command streamer and a second plurality of command queues associated with the second command streamer.
-
5.
公开(公告)号:US20230315481A1
公开(公告)日:2023-10-05
申请号:US18312079
申请日:2023-05-04
Applicant: Intel Corporation
Inventor: ELMOUSTAPHA OULD-AHMED-VALL , BARATH LAKSHMANAN , TATIANA SHPEISMAN , Joydeep Ray , Ping T. Tang , Michael Strickland , Xiaoming Chen , Anbang Yao , Ben J. Ashbaugh , Linda L. Hurd , Liwei Ma
IPC: G06F9/38 , G06F9/30 , G06F13/42 , G06F13/40 , G06N20/00 , G06T1/20 , G06N3/063 , G06N3/084 , G06N20/10 , G06N3/044 , G06N3/045 , G06F9/50 , G06F15/80 , G06N3/00
CPC classification number: G06F9/3887 , G06F9/3001 , G06F9/30014 , G06F9/30036 , G06F9/30094 , G06F9/30109 , G06F9/30112 , G06F9/3016 , G06F9/3851 , G06F9/3891 , G06F9/50 , G06F13/4068 , G06F13/4282 , G06F15/80 , G06N3/00 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/084 , G06N20/00 , G06N20/10 , G06T1/20 , G06F2213/0026
Abstract: Described herein is a general-purpose graphics processing unit including a multiprocessor having a single instruction, multiple thread, SIMT, architecture. The multiprocessor comprises multiple sets of compute units each having a first logic unit configured to perform floating-point operations and a second logic unit configured to perform integer operations, with a thread of the floating-point instruction being executed in parallel with a thread of the integer instruction.
-
公开(公告)号:US11727246B2
公开(公告)日:2023-08-15
申请号:US16283021
申请日:2019-02-22
Applicant: Intel Corporation
Inventor: Liwei Ma , Elmoustapha Ould-Ahmed-Vall , Barath Lakshmanan , Ben J. Ashbaugh , Jingyi Jin , Jeremy Bottleson , Mike B. Macpherson , Kevin Nealis , Dhawal Srivastava , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman , Altug Koker , Abhishek R. Appu
Abstract: Embodiments provide systems and methods which facilitate optimization of a convolutional neural network (CNN). One embodiment provides for a non-transitory machine-readable medium storing instructions that cause one or more processors to perform operations comprising processing a trained convolutional neural network (CNN) to generate a processed CNN, the trained CNN having weights in a floating-point format. Processing the trained CNN includes quantizing the weights in the floating-point format to generate weights in an integer format. Quantizing the weights includes generating a quantization table to enable non-uniform quantization of the weights and quantizing the weights from the floating-point format to the integer format using the quantization table. The operations additionally comprise performing an inference operation utilizing the processed CNN with the integer format weights.
-
公开(公告)号:US20230061331A1
公开(公告)日:2023-03-02
申请号:US17960611
申请日:2022-10-05
Applicant: Intel Corporation
Inventor: Elmoustapha Ould-Ahmed-Vall , Sara S. Baghsorkhi , Anbang Yao , Kevin Nealis , Xiaoming Chen , Altug Koker , Abhishek R. Appu , John C. Weast , Mike B. Macpherson , Dukhwan Kim , Linda L. Hurd , Ben J. Ashbaugh , Barath Lakshmanan , Liwei Ma , Joydeep Ray , Ping T. Tang , Michael S. Strickland
IPC: G06T1/20 , G06F7/483 , G06N3/08 , G06F9/30 , G06N3/04 , G06N3/063 , G06F9/50 , G06F9/38 , G06N20/00
Abstract: One embodiment provides a multi-chip module accelerator usable to execute tensor data processing operations a multi-chip module. The multi-chip module may include a memory stack including multiple memory dies and parallel processor circuitry communicatively coupled to the memory stack. The parallel processor circuitry may include multiprocessor cores to execute matrix multiplication and accumulate operations. The matrix multiplication and accumulate operations may include floating-point operations that are configurable to include two-dimensional matrix multiply and accumulate operations involving inputs that have differing floating-point precisions. The floating-point operations may include a first operation at a first precision and a second operation at a second precision. The first operation may include a multiply having at least one 16-bit floating-point input and the second operation may include an accumulate having a 32-bit floating-point input.
-
公开(公告)号:US11348198B2
公开(公告)日:2022-05-31
申请号:US17145885
申请日:2021-01-11
Applicant: Intel Corporation
Inventor: Prasoonkumar Surti , Narayan Srinivasa , Feng Chen , Joydeep Ray , Ben J. Ashbaugh , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Sara S. Baghsorkhi , Justin E. Gottschlich , Altug Koker , Nadathur Rajagopalan Satish , Farshad Akhbari , Dukhwan Kim , Wenyin Fu , Travis T. Schluessler , Josh B. Mastronarde , Linda L. Hurd , John H. Feit , Jeffery S. Boles , Adam T. Lake , Karthik Vaidyanathan , Devan Burke , Subramaniam Maiyuran , Abhishek R. Appu
Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a plurality of processing units each comprising a plurality of execution units (EUs), wherein the plurality of EUs comprise a first EU type and a second EU type.
-
公开(公告)号:US20210397925A1
公开(公告)日:2021-12-23
申请号:US17446101
申请日:2021-08-26
Applicant: Intel Corporation
Inventor: Liwei Ma , Elmoustapha Ould-Ahmed-Vall , Barath Lakshmanan , Ben J. Ashbaugh , Jingyi Jin , Jeremy Bottleson , Mike B. Macpherson , Kevin Nealis , Dhawal Srivastava , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman , Altug Koker , Abhishek R. Appu
Abstract: A library of machine learning primitives is provided to optimize a machine learning model to improve the efficiency of inference operations. In one embodiment a trained convolutional neural network (CNN) model is processed into a trained CNN model via pruning, convolution window optimization, and quantization.
-
公开(公告)号:US10956330B2
公开(公告)日:2021-03-23
申请号:US16727127
申请日:2019-12-26
Applicant: Intel Corporation
Inventor: Chandrasekaran Sakthivel , Prasoonkumar Surti , John C. Weast , Sara S. Baghsorkhi , Justin E. Gottschlich , Abhishek R. Appu , Nicolas C. Galoppo Von Borries , Joydeep Ray , Narayan Srinivasa , Feng Chen , Ben J. Ashbaugh , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Eriko Nurvitadhi , Balaji Vembu , Altug Koker
IPC: G06F12/0837 , G06N3/08 , G06N20/00 , G06T1/20 , G06F12/0815 , G06N3/063 , G06N3/04
Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.
-
-
-
-
-
-
-
-
-