Abstract:
A hole plate and a MEMS microphone arrangement are disclosed. In an embodiment a hole plate includes a substrate with a first main surface, a second main surface, and a lateral surface and a perforation structure formed within the substrate, the perforation structure having a plurality of through-holes through the substrate, wherein the through-holes and the lateral surface are a result of a simultaneous dry etching step.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming openings in a substrate. The method includes forming a dummy fill material within the openings and thinning the substrate to expose the dummy fill material. The dummy fill material is removed.
Abstract:
A semiconductor chip includes a body having a frontside, a backside opposite the frontside, and sidewalls extending between the backside and frontside, at least a portion of each sidewall having a defined surface structure with hydrophobic characteristics to inhibit travel of a bonding material along the sidewalls during attachment of the semiconductor chip to a carrier with the bonding material.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming openings in a substrate. The method includes forming a dummy fill material within the openings and thinning the substrate to expose the dummy fill material. The dummy fill material is removed.
Abstract:
A method for producing at least one cavity within a semiconductor substrate includes dry etching the semiconductor substrate from a surface of the semiconductor substrate at at least one intended cavity location in order to obtain at least one provisional cavity. The method includes depositing a protective material with regard to a subsequent wet-etching process at the surface of the semiconductor substrate and at cavity surfaces of the at least one provisional cavity. Furthermore, the method includes removing the protective material at least at a section of a bottom of the at least one provisional cavity in order to expose the semiconductor substrate. This is followed by electrochemically etching the semiconductor substrate at the exposed section of the bottom of the at least one provisional cavity. A method for producing a micromechanical sensor system in which this type of cavity formation is used and a corresponding MEMS are also disclosed.
Abstract:
A method for structuring a substrate and a structured substrate are disclosed. In an embodiment a method includes providing a substrate with a first main surface and a second main surface, wherein the substrate is fixed to a carrier arrangement at the second main surface, performing a photolithography step at the first main surface of the substrate to mark a plurality of sites at the first main surface, the plurality of sites corresponding to future perforation structures and future kerf regions for a plurality of future individual semiconductor chips to be obtained from the substrate, and plasma etching the substrate at the plurality of sites until the carrier arrangement is reached, thus creating the perforation structures within the plurality of individual semiconductor chips and simultaneously separating the individual semiconductor chips along the kerf regions.
Abstract:
A method includes a step of performing a time multiplexed etching process, wherein the last etching step of the time multiplexed etching process is of a first time duration. After performing the time multiplexed etching process, an etching step having a second time duration is performed, wherein the second time duration is greater than the first time duration.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming openings in a substrate. The method includes forming a dummy fill material within the openings and thinning the substrate to expose the dummy fill material. The dummy fill material is removed.
Abstract:
An integrated circuit substrate and a method for manufacturing the same are disclosed. In an embodiment a method includes providing a wafer having a plurality of active areas, each active area being provided in a separate die area and for each active area, providing a code pattern outside the active area, the code pattern being associated with the die area.
Abstract:
The description discloses a method for use in manufacturing integrated circuit chips. The method comprises providing a wafer having a plurality of integrated circuits each provided in an separate active areas, and, for each active area, outside the active area, providing a code pattern that is associated with the integrated circuit. A computer-readable medium is also disclosed. Further, a manufacturing apparatus configured to receive a wafer and to remove material from the wafer so as to provide a scribe line to the wafer formed as a trench for use in separation of the wafer into dies is also disclosed. The description also discloses a wafer, an integrated circuit chip die substrate originating from a wafer of origin and carrying an integrated circuit, and an integrated circuit chip.