Abstract:
A method including forming a dummy gate on a substrate, wherein the dummy gate includes an oxide, forming a pair of dielectric spacers on opposite sides of the dummy gate, and forming an inter-gate region above the substrate and in contact with at least one of the pair of dielectric spacers, the inter-gate region comprising a protective layer on top of a first oxide layer, wherein the protective layer comprises a material resistant to etching techniques designed to remove oxide. The method may further include removing the dummy gate to leave an opening, and forming a gate within the opening.
Abstract:
A method including forming a dummy gate on a substrate, wherein the dummy gate includes an oxide, forming a pair of dielectric spacers on opposite sides of the dummy gate, and forming an inter-gate region above the substrate and in contact with at least one of the pair of dielectric spacers, the inter-gate region comprising a protective layer on top of a first oxide layer, wherein the protective layer comprises a material resistant to etching techniques designed to remove oxide. The method may further include removing the dummy gate to leave an opening, and forming a gate within the opening.
Abstract:
A structure including a first plurality of fins and a second plurality of fins etched from a semiconductor substrate, and a fill material located above the semiconductor substrate and between the first plurality of fins and the second plurality of fins, the fill material does not contact either the first plurality of fins or the second plurality of fins.
Abstract:
A method including forming a dummy gate on a substrate, wherein the dummy gate includes an oxide, forming a pair of dielectric spacers on opposite sides of the dummy gate, and forming an inter-gate region above the substrate and in contact with at least one of the pair of dielectric spacers, the inter-gate region comprising a protective layer on top of a first oxide layer, wherein the protective layer comprises a material resistant to etching techniques designed to remove oxide. The method may further include removing the dummy gate to leave an opening, and forming a gate within the opening.
Abstract:
After formation of a silicon nitride gate spacer and a silicon nitride liner overlying a disposable gate structure, a dielectric material layer is deposited, which includes a dielectric material that is not prone to material loss during subsequent exposure to wet or dry etch chemicals employed to remove disposable gate materials in the disposable gate structure. The dielectric material can be a spin-on dielectric material or can be a dielectric metal oxide material. The dielectric material layer and the silicon nitride liner are planarized to provide a planarized dielectric surface in which the disposable gate materials are physically exposed. Surfaces of the planarized dielectric layer is not recessed relative to surfaces of the silicon nitride layer during removal of the disposable gate materials and prior to formation of replacement gate structures, thereby preventing formation of metallic stringers.
Abstract:
Techniques are discloses to apply an external stress onto the source/drain semiconductor fin sidewall areas and latch the same onto the semiconductor fin before releasing the sidewalls for subsequent salicidation and contact formation. In particular, selected portions of a semiconductor are subjected to an amorphizing ion implantation which disorients the crystal structure of the selected portions of the semiconductor fins, relative to portions of the semiconductor fin that is beneath a gate stack and encapsulated with various liners. At least one stress liner is formed and then stress memorization occurs by performing a stress latching annealing. During this anneal, recrystallization of the disoriented crystal structure occurs. The at least one stress liner is removed and thereafter merging of the semiconductor fins in the source/drain regions is performed.
Abstract:
A method including forming a dummy gate on a substrate, wherein the dummy gate includes an oxide, forming a pair of dielectric spacers on opposite sides of the dummy gate, and forming an inter-gate region above the substrate and in contact with at least one of the pair of dielectric spacers, the inter-gate region comprising a protective layer on top of a first oxide layer, wherein the protective layer comprises a material resistant to etching techniques designed to remove oxide. The method may further include removing the dummy gate to leave an opening, and forming a gate within the opening.
Abstract:
A method of forming a FinFET structure which includes forming fins on a semiconductor substrate; forming a gate wrapping around at least one of the fins, the gate having a first surface and an opposing second surface facing the fins; depositing a hard mask on a top of the gate; angle implanting nitrogen into the first and second surfaces of the gate so as to form a nitrogen-containing layer in the gate that is below and in direct contact with the hard mask on top of the gate; forming spacers on the gate and in contact with the nitrogen-containing layer; and epitaxially depositing silicon on the at least one fin so as to form a raised source/drain. Also disclosed is a FinFET structure.
Abstract:
A method including providing a plurality of fins etched from a semiconductor substrate and covered by an oxide layer and a nitride layer, the oxide layer being located between the plurality of fins and the nitride layer, removing a portion of the plurality of fins to form an opening, and forming a dielectric spacer on a sidewall of the opening. The method may also include filling the opening with a fill material, wherein a top surface of the fill material is substantially flush with a top surface of the nitride layer, removing the nitride layer to form a gap between the plurality of fins and the fill material, wherein the fill material has re-entrant geometry extending over the gap, and removing the re-entrant geometry and causing the gap between the plurality of fins and the fill material to widen.
Abstract:
Embodiments of the present invention provide hydrogen-free dielectric films and methods of fabrication. A hydrogen-free precursor, such as tetraisocyanatosilane, and hydrogen-free reactants, such as nitrogen, oxygen (O2/O3) and nitrous oxide are used with chemical vapor deposition processes (PECVD, thermal CVD, SACVD, HDP CVD, and PE and Thermal ALD) to create hydrogen-free dielectric films. In some embodiments, there are multilayer dielectric films with sublayers of various materials such as silicon oxide, silicon nitride, and silicon oxynitride. In embodiments, the hydrogen-free reactants may include Tetra Isocyanato Silane, along with a hydrogen-free gas including, but not limited to, N2, O2, O3, N2O, CO2, CO and a combination thereof of these H-Free gases. Plasma may be used to enhance the reaction between the TICS and the other H-free gasses. The plasma may be controlled during film deposition to achieve variable density within each sublayer of the films.