Abstract:
A method of forming a member for joining to form a composite wiring board. The member includes a dielectric substrate. Adhesive tape is applied to at least one face of said substrate. At least one opening is formed through the substrate extending from one face to the other and through each adhesive tape. An electrically conductive material is dispensed in each of the openings and partially cured. The adhesive tape is removed to allow a nub of the conductive material to extend above the substrate face to form a wiring structure with other elements.
Abstract:
A method of forming a core for and forming a composite wiring board. The core has an electrically conductive coating on at least one face of a dielectric substrate. At least one opening is formed through the substrate extending from one face to the other and through each conductive coating. An electrically conductive material is dispensed in each of the openings extending through the conducting coating. At least a portion of the surface of the conductive coating on one face is removed to allow a nub of the conductive material to extend above the substrate face and any remaining conductive material to thereby form a core that can be electrically joined face-to-face with a second core member or other circuitized structure.
Abstract:
Deterioration and damage to insulator materials in an interconnection structure having vertical connections due to exposure to heat during bonding of lamina is avoided by performing diffusion bonding of metal pads at plated through holes (PTH) at temperatures below the melting points of conductive material in the bond. Diffusion bonding is achieved during time periods required for processing (e.g. curing or drying) of insulating materials in the laminated structure.
Abstract:
High aspect ratio (5:1-30:1) and small (5 nullm-125 nullm) diameter holes in a dielectric substrate are provided, which are filled with a solidified conductive material, as well as a method of filling such holes using pressure and vacuum. In certain embodiments, the holes are lined with conductive material and/or capped with a conductive material. The invention also contemplates a chip carrier formed by such material.
Abstract:
A method for producing small pitch z-axis electrical interconnections in layers of dielectric materials which are applied to printed wiring boards and diverse electronic packages. A method for parallel fabrication of intermediate structures which are subsequently jointed to form a final structure. In addition there is provided a z-interconnected electrical structure, employing dielectric materials such as resin coated copper, employable in the manufacture of diverse type of electronic packages, including printed wiring boards (PWBs), substrates, multi-chip modules and the like.
Abstract:
A method of forming a core for and forming a composite wiring board. The core has an electrically conductive coating on at least one face of a dielectric substrate. At least one opening is formed through the substrate extending from one face to the other and through each conductive coating. An electrically conductive material is dispensed in each of the openings extending through the conducting coating. At least a portion of the surface of the conductive coating on one face is removed to allow a nub of the conductive material to extend above the substrate face and any remaining conductive material to thereby form a core that can be electrically joined face-to-face with a second core member or other circuitized structure.
Abstract:
A method of forming a laminated composite printed wiring structure of a plurality of at least three superimposed subcomposites having organic substrates is provided. Via openings in the subcomposite structures having conductive paste therein are positioned to align with openings in at least one adjacent subcomposite structure also filled with conductive paste that is to be joined thereto. Printed wiring is provided on at least one face of one subcomposite structure. A fixture with pins which extends through index openings in the composites are provided to mount masks for screening paste and stacking of the composites is provided. After screening of paste, and partially curing of the paste, in each composite, a group of composites is placed on the fixture and the pastes are fully cured to form a unitary structure.
Abstract:
A method of forming a core for and forming a composite wiring board. The core has an electrically conductive coating on at least one face of a dielectric substrate. At least one opening is formed through the substrate extending from one face to the other and through each conductive coating. An electrically conductive material is dispensed in each of the openings extending through the conducting coating. At least a portion of the surface of the conductive coating on one face is removed to allow a nub of the conductive material to extend above the substrate face and any remaining conductive material to thereby form a core that can be electrically joined face-to-face with a second core member or other circuitized structure.