Abstract:
Optical switches include a phase shifter on a first branch, a first heater on the first branch, and a second heater on a second branch. A hybrid coupler combines the first branch and the second branch. A first photodetector and a second photodetector are at outputs of the second hybrid coupler to measure crosstalk between the outputs of the second hybrid coupler. A controller is configured to activate the first heater or the second heater to reduce the measured crosstalk.
Abstract:
A device and method of optical equalization using an optical modulator is provided. An electrical modulation signal is split into a first modulation signal and a second modulation signal. The second modulation signal is delayed relative to the first modulation signal. An amplitude of the second modulation signal is attenuated relative to the first modulation signal. The first modulation signal is applied to a first waveguide segment of the optical modulator. The second modulation signal that is delayed and attenuated relative to the first modulation signal is applied to a second waveguide segment of the optical modulator. Both the applied first and second modulation signals generate a feed-forward equalized optical signal that is recombined in the optical domain.
Abstract:
An apparatus comprises a digitally controlled circuit having a variable capacitance and a controller configured to adjust a magnitude of the variable capacitance of the digitally controlled circuit. The digitally controlled circuit comprises a plurality of gain elements, the plurality of gain elements comprising one or more positive voltage-to-frequency gain elements and one or more negative voltage-to-frequency gain elements. The controller is configured to adjust the magnitude of the capacitance by adjusting the gain provided by respective ones of the gain elements in an alternating sequence of the positive voltage-to-frequency gain elements and the negative voltage-to-frequency gain elements.
Abstract:
A device and method of optical equalization using an optical modulator is provided. An electrical modulation signal is split into a first modulation signal and a second modulation signal. The second modulation signal is delayed relative to the first modulation signal. An amplitude of the second modulation signal is attenuated relative to the first modulation signal. The first modulation signal is applied to a first waveguide segment of the optical modulator. The second modulation signal that is delayed and attenuated relative to the first modulation signal is applied to a second waveguide segment of the optical modulator. Both the applied first and second modulation signals generate a feed-forward equalized optical signal that is recombined in the optical domain.
Abstract:
A method includes forming a resonator comprising a plurality of switched impedances spatially distributed within the resonator, selecting a resonant frequency for the resonator, and distributing two or more transconductance elements within the resonator based on the selected resonant frequency. Distributing the two or more transconductance elements may include non-uniformly distributing the two or more transconductance elements within the resonator.
Abstract:
A method includes forming a resonator comprising a plurality of switched impedances spatially distributed within the resonator, selecting a resonant frequency for the resonator, and distributing two or more transconductance elements within the resonator based on the selected resonant frequency. Distributing the two or more transconductance elements may include non-uniformly distributing the two or more transconductance elements within the resonator.
Abstract:
Methods and devices for phase adjustment include a phase detector that is configured to compare a reference clock and a feedback clock and to generate two output signals. A difference in time between pulse widths of the two output signals corresponds to a phase difference between the reference clock and the feedback clock. A programmable delay line is configured to delay an earlier output signal in accordance with a predicted deterministic phase error. An oscillator is configured to generate a feedback signal in accordance with the delayed output signal. A divider is configured to divide a frequency of the oscillator output by an integer N. The integer N is varied to achieve an average fractional divide ratio and the predicted deterministic phase error is based on the average divide ratio and an instantaneous divide ratio.
Abstract:
Methods and systems for phase correction include determining a phase error direction and generating a prediction for the phase error based on a sigma-delta error. It is determined whether the prediction agrees with the determined phase error direction. If the prediction does not agree, a phase correction is adjusted in accordance with the predicted phase error.
Abstract:
A silicon-on-insulator wafer is provided. The silicon-on-insulator wafer includes a silicon substrate having optical vias formed therein. In addition, an optically transparent oxide layer is disposed on the silicon substrate and the optically transparent oxide layer is in contact with the optical vias. Then, a complementary metal-oxide-semiconductor layer is formed over the optically transparent oxide layer.
Abstract:
Optical switches include a first hybrid coupler configured to accept an input and to provide two branches. A phase tuner on a first branch includes a phase shifter. A first heater is positioned on the first branch and a second heater is positioned on the second branch, each configured to compensate for phase error. A second hybrid coupler configured to recombine the two branches. A first photodetector and a second photodetector are positioned at outputs of the second hybrid coupler and are configured to measure crosstalk between the outputs of the second hybrid coupler. A controller is configured to activate the first heater or the second heater to reduce the measured crosstalk.