Abstract:
A system for disinfecting a sample of water includes a container for holding the sample of water, an array of photovoltaic cells coupled to the container for converting solar radiation into a current, and an array of light emitting diodes coupled to the container and powered by the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation. Another system for disinfecting a sample of water includes a container for holding the sample of water, an array of photovoltaic cells encircling an exterior wall of the container, for converting solar radiation into a current, and an array of light emitting diodes encircling an interior wall of the container and powered by the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation.
Abstract:
A method for forming fin field effect transistors includes forming a dielectric layer on a silicon substrate, forming high aspect ratio trenches in the dielectric layer down to the substrate, the high aspect ratio including a height to width ratio of greater than about 1:1 and epitaxially growing a non-silicon containing semiconductor material in the trenches using an aspect ratio trapping process to form fins. The one or more dielectric layers are etched to expose a portion of the fins. A barrier layer is epitaxially grown on the portion of the fins, and a gate stack is formed over the fins. A spacer is formed around the portion of the fins and the gate stack. Dopants are implanted into the portion of the fins. Source and drain regions are grown over the fins using a non-silicon containing semiconductor material.
Abstract:
A method for fabricating a multigate device includes forming a fin on a substrate of the multigate device, the fin being formed of a semiconductor material, growing a first conformal epitaxial layer directly on the fin and substrate, wherein the first conformal epitaxial layer is highly doped, growing a second conformal epitaxial layer directly on the first conformal epitaxial layer, wherein the second conformal epitaxial layer is highly doped, selectively removing a portion of second epitaxial layer to expose a portion of the first conformal epitaxial layer, selectively removing a portion of the first conformal epitaxial layer to expose a portion of the fin and thereby form a trench, and forming a gate within the trench.
Abstract:
A method for fabricating a multigate device includes forming a fin on a substrate of the multigate device, the fin being formed of a semiconductor material, growing a first conformal epitaxial layer directly on the fin and substrate, wherein the first conformal epitaxial layer is highly doped, growing a second conformal epitaxial layer directly on the first conformal epitaxial layer, wherein the second conformal epitaxial layer is highly doped, selectively removing a portion of second epitaxial layer to expose a portion of the first conformal epitaxial layer, selectively removing a portion of the first conformal epitaxial layer to expose a portion of the fin and thereby form a trench, and forming a gate within the trench.
Abstract:
A method for fabricating a multigate device includes forming a fin on a substrate of the multigate device, the fin being formed of a semiconductor material, growing a first conformal epitaxial layer directly on the fin and substrate, wherein the first conformal epitaxial layer is undoped or lightly doped, growing a second conformal epitaxial layer directly on the first conformal epitaxial layer, wherein the second conformal epitaxial layer is highly doped, selectively removing a portion of the second epitaxial layer to expose a portion of the first conformal epitaxial layer and thereby form a trench, and forming a gate within the trench.
Abstract:
Disinfecting a sample of water includes generating a current using an array of photovoltaic cells, using the current to power an array of light emitting diodes, wherein the array of light emitting diodes emits a germicidal wavelength of radiation, and exposing the sample of water to the radiation. Another method for disinfecting a sample of water includes placing the sample of water within a container, wherein the container includes an array of photovoltaic cells encircling an exterior wall of the container and an array of light emitting diodes encircling an interior wall of the container, placing the container in a location exposed to solar radiation, converting the solar radiation to a current using the array of photovoltaic cells, and powering the array of light emitting diodes using the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation sufficient to disinfect the sample of water.