Abstract:
Friction clutches 203, 204 and engaging clutches 19, 20, 21 are arranged between an input shaft and an output shaft of a gear type transmission having a plurality of gear trains. A power train unit 100 controls an output shaft torque and an input rotation speed of the transmission during changing speed by estimating or detecting input a torque to the transmission, and detecting an output rotation speed of the transmission, and setting a target shift torque during shifting gear, and setting a command value to the friction clutches 203 and 204 from the target shift torque and the input torque.
Abstract:
In a power transmission apparatus for use in an automobile, including a gear-type transmission and plural numbers of motors, the gear-type transmission 100 comprises: a first input shaft 23, onto which the motive power is transmitted from an engine 1 through a first friction clutch 25; a second input shaft 24, onto which the motive power is transmitted from an engine 1 through a second friction clutch 26; and plural numbers of gear trains between the first input shaft 23 and an output shaft 27, and between the second input shaft 24 and the output shaft 27. Onto the first input shaft 23 and the second input shaft 24 are connected a first motor 29 and a second motor 30, so that the motive power is transmitted from the above two (2) motors through the plural numbers of gear trains up to the output shaft 27. Therefore, it is possible to make the maximum torque of the motors small, which is required when changing claw clutches provided on the gear trains.
Abstract:
An automatic transmission has a first axis (input axis) 102 for inputting the power, a second axis (output axis or couner axis) 103 for outputting the driving force source, at least one or more first gear group which consists of drive gears 111, 112 fixed on the first axis, and a driven gear 122 provided so as to engage or run idle with respect to the second axis with being engaged with the drive gear, and at least one or more second gear group which consists of driven gears 123, 124, 125 fixed on the second axis, and a drive gear 114, 115 provided so as to engage or run idle with respect to the first axis with being engaged with the driven gear. The automatic transmission further comprises a torque transferring mechanism 140 for transfering the torque between said driven gear which can run idle with respect to the second axis and the driven gear fixed to the second axis.
Abstract:
In a system of accelerating a car using a brake operating mechanism, the driver is required to be ready to step on the brake operating mechanism so as to rapidly decelerate the car in order to avoid danger, if necessary, while he is releasing his foot from the brake operating mechanism, which is a burden for the driver. Therefore, a footrest function range and a braking force increasing function range are provided to an operating amount or an operating force of a pedal 13.
Abstract:
An apparatus and a method for controlling an automotive vehicle are disclosed, in which a control amount for securing safety of the vehicle and the control amount for achieving a state intended for by the driver of the vehicle are switched in such a manner as to reduce the shock due to the change in the torque generated from the power train, thereby accomplishing both safety and maneuverability at the same time. A first target value is set for controlling at least selected one of the driving torque, the driving force and the acceleration/deceleration rate. A second target value is calculated in accordance with the drive mode intended for by the driver or the driving environment ahead of the vehicle. In the case where a deviation exceeding a predetermined value develops between the first target value and the second target value, the fluctuations of at least one of the driving torque, the driving force and the acceleration/deceleration rate are suppressed.
Abstract:
An apparatus and a method of controlling a vehicle is provided for correcting a lowered value of the torque of an output shaft in the gear shifting and suppressing a revolution speed of an input shaft on the basis of the lowered torque correction. The torque of the input shaft is adjusted at the termination of the gear shifting on the basis of the lowered torque correction.
Abstract:
In a system of accelerating a car using a brake operating mechanism, the driver is required to be ready to step on the brake operating mechanism so as to rapidly decelerate the car in order to avoid danger, if necessary, while he is releasing his foot from the brake operating mechanism, which is a burden for the driver. Therefore, a footrest function range and a braking force increasing function range are provided to an operating amount or an operating force of a pedal 13.
Abstract:
In a system of accelerating a car using a brake operating mechanism, the driver is required to be ready to step on the brake operating mechanism so as to rapidly decelerate the car in order to avoid danger, if necessary, while he is releasing his foot from the brake operating mechanism, which is a burden for the driver. Therefore, a footrest function range and a braking force increasing function range are provided to an operating amount or an operating force of a pedal 13.
Abstract:
A mesh type automatic transmission is equipped with a plurality of shift gears arranged to rotate freely to an output shaft for providing driving force to the wheels. Cogged clutches 12, 15 engage with the output shaft. Counter shift gears corresponding to each speed are fixed to a counter shaft rotated by the rotation of an input shaft and mesh with the shift gears for performing automatic shifting by controlling engagement of one of the cogged clutches with the voluntary shift gears determined from the accelerator command value and the vehicle speed. An assist mechanism transmits rotational force of the input shaft to the output shaft via the assist shaft which rotates from the rotation of the counter shaft when no cogged clutch of the plurality of cogged clutches is engaged with any of the plurality of shift gears occurring during switching when an engaged cogged clutch of the plurality of cogged clutches is disengaged and one of the cogged clutch of the plurality of cogged clutches is to be engaged.
Abstract:
An apparatus and a method for controlling an automotive vehicle are disclosed, in which a control amount for securing safety of the vehicle and the control amount for achieving a state intended for by the driver of the vehicle are switched in such a manner as to reduce the shock due to the change in the torque generated from the power train, thereby accomplishing both safety and maneuverability at the same time. A first target value is set for controlling at least selected one of the driving torque, the driving force and the acceleration/deceleration rate. A second target value is calculated in accordance with the drive mode intended for by the driver or the driving environment ahead of the vehicle. In the case where a deviation exceeding a predetermined value develops between the first target value and the second target value, the fluctuations of at least one of the driving torque, the driving force and the acceleration/deceleration rate are suppressed.