Abstract:
An electric actuator for use with a drive apparatus is disclosed herein. An electric motor drives a reduction gear train to position a control shaft, the reduction gear train having a worm drive that motivates a spur gear reduction. A slip clutch is disposed between the worm drive and spur gear reduction to protect the components of the reduction gear train, and to also place a limit on the torque applied to the control shaft. The housing of the electric actuator features a motor chamber to accommodate the electric motor and is sealed by a cap having an electric connector.
Abstract:
An electric actuator for use with a drive apparatus is disclosed herein. The electric actuator has a rotary design incorporating a position sensor disposed to engage the end of a control shaft. An electric motor drives a reduction gear train to position the control shaft, the reduction gear train having a worm drive that motivates a spur gear reduction. A slip clutch is disposed between the worm drive and spur gear reduction to protect the components of the reduction gear train, and to also place a limit on the torque applied to the control shaft. The housing of the electric actuator features a motor chamber to accommodate the electric motor and is sealed by a cap having an electric connector. The actuator gears may be integrated in a common sump with the drive apparatus.
Abstract:
An electric vehicle can include a power unit including a speed reduction device coupled to a motor output shaft. Two systems can be provided which are a drive-power transmission path to transmit rotation of a motor to a wheel hub, and a regenerative-power transmission path to transmit rotation of the hub to the motor. A drive-side one-way clutch is provided between the hub and a second internal gear being the final-stage gear in the drive-power transmission path and is configured to transmit rotation of the drive-side final-stage gear to the hub. A regeneration-side one-way clutch is provided between the hub and a regeneration-side first-stage gear and is configured to transmit rotation of the hub to the regeneration-side first-stage gear.
Abstract:
A method for operating a powertrain system includes executing a transmission shift between an initial electrically-variable transmission (EVT) range and a target EVT range. The transmission shift includes transitioning to operating with three speed degrees of freedom including controlling speed of a second torque machine to synchronize speed of an oncoming clutch associated with the target EVT range and coincidentally controlling speeds of a first torque machine and an engine to achieve a preferred speed of the output member of the transmission. The transmission shift further includes controlling torque output from the first torque machine in response to an output torque request, and activating the oncoming clutch upon synchronizing the speed of the oncoming clutch. Subsequent to the transmission shift, the powertrain system is operated in the target EVT range.
Abstract:
A system for driving an assembly arrangement for a motor vehicle, which assembly arrangement having at least one auxiliary assembly and an electric machine which is configured independently of a drive unit of the motor vehicle. It is possible for the electric machine to be operated both as a motor for driving the auxiliary assembly and as a generator for generating electric power. If required, it is possible for a separate engine which is configured as an internal combustion engine to be connected or fastened releasably via an interface to the assembly arrangement and to be coupled to the assembly arrangement for drive action, in order to supply the at least one auxiliary assembly and/or the electric machine with rotational drive moment.
Abstract:
A drivetrain of a motor vehicle, with a hybrid drive, comprising an internal combustion engine and an electric machine and a semi-automatic group transmission. The semi-automatic group transmission comprises at least a main transmission and a downstream group in drive connection downstream with the main transmission. An input shaft of the semi-automatic group transmission is connected, via a controllable starting clutch, to the internal combustion engine of the hybrid drive and an output shaft of the semi-automatic group transmission is connected to an axle drive. Depending on the shift position of at least one shifting element, the electric machine can be coupled to the force flow or the torque flow of the drivetrain between the main transmission and the downstream group of countershaft design and/or between the downstream group of a countershaft design and the axle drive.
Abstract:
A control device of a vehicle includes: power dividing mechanism that has a plurality of rotating elements rotated by torque output and transmitted from an engine and a first motor/generator and switches a transmission mode according to the engaging states of the respective rotating elements; and a clutch that has a first engaging member and a second engaging member having a backlash between them in a rotating direction thereof, and that sets a transmission mode to a fixed transmission ratio mode by engaging the first engaging member connected to one of the rotating elements with the second engaging member, and sets the transmission mode to a continuously variable transmission ratio mode by releasing the engagement. In the control device of a vehicle, the magnitude of the reversed rotating torque is reduced when the direction of rotating torque acting between the first and seconds engaging members.
Abstract:
A control system for driving motor configured to synchronize rotor phases of a plurality of driving motors of wheels using a single inverter. The control system comprises driving motor connected with a wheel to drive the wheel; a clutch interposed between the driving motor and the wheel; and a current control means connected with the driving motor to supply current thereto. A switching unit switches electrical connection in a manner to supply the current to both of the driving motors from one of the current control unit by interrupting the current supply from the other current control unit. The clutch interrupts torque transmission in case the switching mechanism switches the electrical connection in a manner to supply the current to both of the driving motors from one of the current control unit to drive the vehicle.
Abstract:
Disclosed is a method for suppressing a speed ripple occurring during an operation of an AC motor by using a torque compensator based on an activation function. The method includes the steps of calculating a speed error ωerr based on a reference speed ωref and an actual speed ωact; calculating a controller output Trm by using the speed error ωerr as an input of a PI control and an operation of a compensated torque Tcom; and determining a torque variation based on the controller output Trm and a reference torque Tref and operating the torque variation in relation to an anti-windup gain Ka to use torque variation as an input of an integral (I) control. The method suppresses the speed ripple by compensating for the torque ripple through a controller which calculates the compensated torque by taking the signs of the speed error and the differential speed error into consideration.
Abstract:
A method for operating a hybrid vehicle drive-train having an engine, electric machine, transmission and a planetary gearset comprising ring, sun and carrier elements. A first planetary element is coupled to a transmission input shaft, a second planetary element is coupled to the electric machine, and a first clutch couples a third planetary element to the engine while a second clutch couples two of the three elements. When the second clutch is disengaged, the drive-train operates in a first mode while, when the second clutch is engaged, the drive-train operates in a second mode. When starting up or crawling, to change from first to second mode while maintaining traction force at the output, the second clutch engages to reduce the transmission capacity of the first clutch until slip occurs, then the engine speed is regulated, while synchronizing the second clutch, after which the second clutch engages without any load.