Abstract:
An automatic transmission controller and method therefor, comprising: a plurality of torque transmission means provided between an input shaft and an output shaft of a gear-drive transmission, so that at least one gear ratio of the torque transmission means is formed by a friction clutch while the other gear ratios of the torque transmission means are formed by dog clutches, and the friction clutch is controlled when gearshifting is carried out from one gear ratio to another gear ratio; wherein gearshifting time is controlled to be shorter when a depress stroke of an accelerator pedal increases after a gearshifting start request, than that when the depress stroke of the accelerator pedal is fixed.
Abstract:
To provide an engine power-train control apparatus and method for securing both operability and safety by controlling an actual acceleration/deceleration to a target acceleration/deceleration requested by a driver under an undangerous traveling condition and changing the target acceleration/deceleration so as to take precedence of safety traveling if the driver encounters a dangerous traveling condition. To achieve the above mentioned: the control is performed in which acceleration/deceleration and speed of a motor vehicle are detected; a target acceleration/deceleration is operated; a road condition such as a road gradient or presence or absence of a forward motor vehicle is detected to decide whether the road condition is dangerous; and the target acceleration is changed if the condition is decided to be dangerous.
Abstract:
In a power transmission apparatus for use in an automobile, including a gear-type transmission and plural numbers of motors, the gear-type transmission 100 comprises: a first input shaft 23, onto which the motive power is transmitted from an engine 1 through a first friction clutch 25; a second input shaft 24, onto which the motive power is transmitted from an engine 1 through a second friction clutch 26; and plural numbers of gear trains between the first input shaft 23 and an output shaft 27, and between the second input shaft 24 and the output shaft 27. Onto the first input shaft 23 and the second input shaft 24 are connected a first motor 29 and a second motor 30, so that the motive power is transmitted from the above two (2) motors through the plural numbers of gear trains up to the output shaft 27. Therefore, it is possible to make the maximum torque of the motors small, which is required when changing claw clutches provided on the gear trains.
Abstract:
A control apparatus and a control method for an automatic transmission, improved over those devised to minimize torque fluctuations which, if left unchecked, give vehicle passengers a disagreeable feeling upon a gear shift. The inventive control apparatus and method, aimed at suppressing such torque fluctuations during a shift of the transmission thereby to improve robustness and provide good shift characteristics, involve recognizing an inertia phase in which the engine speed starts to drop during the shift. At the beginning of the inertia phase, hydraulic pressures supplied to frictional engaging devices in the transmission are kept constant to suppress the torque fluctuations.
Abstract:
An automatic transmission has a first axis (input axis) 102 for inputting the power, a second axis (output axis or couner axis) 103 for outputting the driving force source, at least one or more first gear group which consists of drive gears 111, 112 fixed on the first axis, and a driven gear 122 provided so as to engage or run idle with respect to the second axis with being engaged with the drive gear, and at least one or more second gear group which consists of driven gears 123, 124, 125 fixed on the second axis, and a drive gear 114, 115 provided so as to engage or run idle with respect to the first axis with being engaged with the driven gear. The automatic transmission further comprises a torque transferring mechanism 140 for transfering the torque between said driven gear which can run idle with respect to the second axis and the driven gear fixed to the second axis.
Abstract:
An apparatus and a method for controlling an automotive vehicle are disclosed, in which a control amount for securing safety of the vehicle and the control amount for achieving a state intended for by the driver of the vehicle are switched in such a manner as to reduce the shock due to the change in the torque generated from the power train, thereby accomplishing both safety and maneuverability at the same time. A first target value is set for controlling at least selected one of the driving torque, the driving force and the acceleration/deceleration rate. A second target value is calculated in accordance with the drive mode intended for by the driver or the driving environment ahead of the vehicle. In the case where a deviation exceeding a predetermined value develops between the first target value and the second target value, the fluctuations of at least one of the driving torque, the driving force and the acceleration/deceleration rate are suppressed.
Abstract:
A control apparatus and a control method for an automatic transmission, improved over those devised to minimize torque fluctuations which, if left unchecked, give vehicle passengers a disagreeable feeling upon a gear shift. The inventive control apparatus and method, aimed at suppressing such torque fluctuations during a shift of the transmission thereby to improve robustness and provide good shift characteristics, involve recognizing an inertia phase in which the engine speed starts to drop during the shift. At the beginning of the inertia phase, hydraulic pressures supplied to frictional engaging devices in the transmission are kept constant to suppress the torque fluctuations.
Abstract:
An apparatus and a method of controlling a vehicle is provided for correcting a lowered value of the torque of an output shaft in the gear shifting and suppressing a revolution speed of an input shaft on the basis of the lowered torque correction. The torque of the input shaft is adjusted at the termination of the gear shifting on the basis of the lowered torque correction.
Abstract:
A mesh type automatic transmission is equipped with a plurality of shift gears arranged to rotate freely to an output shaft for providing driving force to the wheels. Cogged clutches 12, 15 engage with the output shaft. Counter shift gears corresponding to each speed are fixed to a counter shaft rotated by the rotation of an input shaft and mesh with the shift gears for performing automatic shifting by controlling engagement of one of the cogged clutches with the voluntary shift gears determined from the accelerator command value and the vehicle speed. An assist mechanism transmits rotational force of the input shaft to the output shaft via the assist shaft which rotates from the rotation of the counter shaft when no cogged clutch of the plurality of cogged clutches is engaged with any of the plurality of shift gears occurring during switching when an engaged cogged clutch of the plurality of cogged clutches is disengaged and one of the cogged clutch of the plurality of cogged clutches is to be engaged.
Abstract:
An apparatus and a method for controlling an automotive vehicle are disclosed, in which a control amount for securing safety of the vehicle and the control amount for achieving a state intended for by the driver of the vehicle are switched in such a manner as to reduce the shock due to the change in the torque generated from the power train, thereby accomplishing both safety and maneuverability at the same time. A first target value is set for controlling at least selected one of the driving torque, the driving force and the acceleration/deceleration rate. A second target value is calculated in accordance with the drive mode intended for by the driver or the driving environment ahead of the vehicle. In the case where a deviation exceeding a predetermined value develops between the first target value and the second target value, the fluctuations of at least one of the driving torque, the driving force and the acceleration/deceleration rate are suppressed.