Abstract:
A method of mounting one or more semiconductor or microelectronic chips, which includes providing a carrier; temporarily adhering the one or more semiconductor or microelectronic chips to the carrier with active faces of the one or more chips facing towards the carrier; providing a package body with at least one chip-receiving opening therein and with at least one contact opening therein; temporarily adhering the package body to the carrier with the at least one opening in the package body accommodating at least a portion of the one or more chips; covering backsides of the one or more chips and filling empty spaces between the one or more chips and walls of the at least one opening in the package body with a metallic material; filling the at least one contact opening with the aforementioned metallic material; wirebonding contacts on the active faces of the one or more chips with contact surfaces in electrical communication with the metallic material in the at least one contact opening; and releasing package body with the one or more chips embedded in the metallic material from the carrier.
Abstract:
A multi-port active circulator includes a plurality of cascode circuits coupled to one another in a ring. Each respective cascode circuit of the plurality of cascode circuits is coupled to a respective port of a plurality of ports. Each respective cascode circuit includes a common source transistor, a common gate transistor coupled to the common source transistor, and a feedback circuit coupled from the common gate transistor to the common source transistor. Each common source transistor of each respective cascode circuit is coupled to a common junction point.
Abstract:
A microwave electronic component comprising a substrate having top and bottom substrate surfaces; the substrate comprising an aperture between the top and bottom substrate surfaces; a metallic heat sink filling the aperture; a microwave integrated circuit having a top circuit surface with at least one microwave signal port and a bottom circuit surface in contact with the metallic heat sink; a signal line comprising at least a metallic via between the top and bottom substrate surfaces, and a top signal conductor arranged between the microwave signal port and the metallic via; wherein the dimensions and location of the metallic via are chosen such that the metallic via forms, together with the metallic heat sink, a first impedance-matched non-coaxial transmission line.
Abstract:
A multi-port active circulator where each of a plurality of FET transistors has (i) a gate connected to an associated port of the multi-port active circulator via a capacitor of an associated one of a plurality of first RF chokes, each of the first RF chokes being connected to a gate of an associated FET transistor of said plurality of transistors, the associated port of said associated FET transistor and to a power supply bias connection; (ii) a source connected to a common point; and (iii) a drain connected to the gate of the same FET transistor by a feedback circuit and connected to the gate of a neighboring FET transistor via a capacitor of one of a plurality of second RF chokes, each of which coupling gates and drains of neighboring FET transistors via capacitors thereof and being connected to another power supply bias connection.
Abstract:
A method of forming an E-plane probe includes forming a plurality of monolithically integrated circuits (MICs) on a wafer, each MIC including a monolithic microwave integrated circuit (MMIC), and an E-plane probe coupled to the MMIC, mounting the wafer on an ultra-violet (UV) tape, cutting the wafer with a laser at a first power and a first linear cutting speed along vertical streets and then along horizontal streets to form separate substrates, cutting with the laser at a second power and a second linear cutting speed a rectangle or a portion of a rectangle from the separate substrates to form narrow substrate extensions on the substrates, and repeating this step for each rectangle or portion of a rectangle to be cut to form substrate extensions, and curing the UV tape, wherein the E-plane probes are on the narrow substrate extensions.
Abstract:
A method for forming a wafer level heat spreader includes providing a mesh wafer, the mesh wafer having a plurality of openings and mesh regions between the openings, bonding the mesh wafer to a backside of an integrated circuit (IC) wafer, the IC wafer comprising a plurality of circuits; and electroplating a heat sink material through the plurality of openings and onto to the backside of the IC wafer.