Abstract:
An input buffer is discussed that inhibits semiconductor breakdown of thin gate-oxide transistors in low-voltage integrated circuits. One aspect of the input buffer includes an input stage having a gate, a drain, and a source. The gate of the input stage is receptive to an inhibiting signal, and the drain is receptive to an input signal. The input stage inhibits the input signal from being presented at the source of the input stage when the inhibiting signal is at a predetermined level. The input buffer further includes an output stage having an inverter that includes a first connection and a second connection. The first connection couples to the source of the input stage, and the second connection presents the input signal to a low-voltage flash memory device.
Abstract:
An input buffer is discussed that inhibits semiconductor breakdown of thin gate-oxide transistors in low-voltage integrated circuits. One aspect of the input buffer includes an input stage having a gate, a drain, and a source. The gate of the input stage is receptive to an inhibiting signal, and the drain is receptive to an input signal. The input stage inhibits the input signal from being presented at the source of the input stage when the inhibiting signal is at a predetermined level. The input buffer further includes an output stage having an inverter that includes a first connection and a second connection. The first connection couples to the source of the input stage, and the second connection presents the input signal to a low-voltage flash memory device.
Abstract:
An input buffer is discussed that inhibits semiconductor breakdown of thin gate-oxide transistors in low-voltage integrated circuits. One aspect of the input buffer includes an input stage having a gate, a drain, and a source. The gate of the input stage is receptive to an inhibiting signal, and the drain is receptive to an input signal. The input stage inhibits the input signal from being presented at the source of the input stage when the inhibiting signal is at a predetermined level. The input buffer further includes an output stage having an inverter that includes a first connection and a second connection. The first connection couples to the source of the input stage, and the second connection presents the input signal to a low-voltage flash memory device.
Abstract:
An input buffer is discussed that inhibits semiconductor breakdown of thin gate-oxide transistors in low-voltage integrated circuits. One aspect of the input buffer includes an input stage having a gate, a drain, and a source. The gate of the input stage is receptive to an inhibiting signal, and the drain is receptive to an input signal. The input stage inhibits the input signal from being presented at the source of the input stage when the inhibiting signal is at a predetermined level. The input buffer further includes an output stage having an inverter that includes a first connection and a second connection. The first connection couples to the source of the input stage, and the second connection presents the input signal to a low-voltage flash memory device.
Abstract:
Apparatuses and methods are described, such as those involving driver circuits that are configured to provide reset and set voltages to different variable state material memory cells in an array at the same time. Additional apparatuses, and methods are described.
Abstract:
The present disclosure includes methods, devices, modules, and systems for operating memory cells. One method embodiment includes applying a ramping voltage to a control gate of a memory cell and to an analog-to-digital converter (ADC). The aforementioned embodiment of a method also includes detecting an output of the ADC at least partially in response to when the ramping voltage causes the memory cell to trip sense circuitry.
Abstract:
A temperature invariant reference voltage and a temperature variant physical quantity, such as a voltage or current, are generated. The temperature variant physical quantity changes in response to a temperature of the integrated circuit. A temperature sensor circuit generates a voltage that is linearly dependent on the temperature. A level generator circuit generates 2n−1 voltage levels from the reference voltage. A comparator circuit, such as an analog-to-digital circuit, compares the voltage from the temperature sensor to the 2n−1 voltage levels to determine which level is closest. An n-bit digital output of the resulting level is proportional to the temperature of the integrated circuit.
Abstract:
A temperature invariant reference voltage and a temperature variant physical quantity, such as a voltage or current, are generated. The temperature variant physical quantity changes in response to a temperature of the integrated circuit. A temperature sensor circuit generates a voltage that is linearly dependent on the temperature. A level generator circuit generates 2n−1 voltage levels from the reference voltage. A comparator circuit, such as an analog-to-digital circuit, compares the voltage from the temperature sensor to the 2n−1 voltage levels to determine which level is closest. An n-bit digital output of the resulting level is proportional to the temperature of the integrated circuit.
Abstract:
Embodiments of the present disclosure provide methods, devices, modules, and systems for memory cell sensing using negative voltage. One method includes applying a negative read voltage to a selected access line of an array of memory cells, applying a pass voltage to a number of unselected access lines of the array, and sensing whether a cell coupled to the selected access line is in a conductive state in response to the applied negative read voltage.
Abstract:
Apparatus, devices, systems, and methods are described that include variable state material data storage. Example devices include current compliance circuits that are configured to dynamically adjust a current passing through a variable resistance material during a memory operation. Some configurations utilize components within an array of memory cells to form a current compliance circuit. Additional apparatus, systems, and methods are described.