Abstract:
A methodology enabling the formation of steep channel profiles for devices, such as SSRW FETs, having a resultant channel profiles that enables suppression of threshold voltage variation and the resulting device are disclosed. Embodiments include providing STI regions in a silicon wafer; performing a deep well implantation of a dopant into the silicon wafer between STI regions; forming a recess in the doped silicon wafer between the STI regions; performing a shallow well implantation of the dopant into the silicon wafer in the recess; and forming Si:C on the doped silicon wafer in the recess.
Abstract:
Disclosed herein are various methods of forming replacement gate structures with a recessed channel region. In one example, the method includes forming a sacrificial gate structure above a semiconducting substrate, removing the sacrificial gate structure to thereby define an initial gate opening having sidewalls and to expose a surface of the substrate and performing an etching process on the exposed surface of the substrate to define a recessed channel in the substrate. The method includes the additional steps of forming a sidewall spacer within the initial gate opening on the sidewalls of the initial gate opening to thereby define a final gate opening and forming a replacement gate structure in the final gate opening.
Abstract:
A method of forming SSRW FETs with controlled step height between a field oxide and epitaxially grown silicon and the resulting devices are provided. Embodiments include providing a SiN layer on a substrate, forming first, second, and third spaced STI regions of field oxide through the SiN layer and into the substrate, removing a top portion of the field oxide for each STI region by a controlled deglaze, removing the SiN layer, forming an n-type region in the substrate between the first and second STI regions and a p-type region in the substrate between the second and third STI regions, and epitaxially growing a Si based layer on the substrate over the n-type and p-type regions.
Abstract:
A methodology enabling the formation of steep channel profiles for devices, such as SSRW FETs, having a resultant channel profiles that enables suppression of threshold voltage variation and the resulting device are disclosed. Embodiments include providing STI regions in a silicon wafer; performing a deep well implantation of a dopant into the silicon wafer between STI regions; forming a recess in the doped silicon wafer between the STI regions; performing a shallow well implantation of the dopant into the silicon wafer in the recess; and forming Si:C on the doped silicon wafer in the recess.