Abstract:
A methodology enabling the formation of steep channel profiles for devices, such as SSRW FETs, having a resultant channel profiles that enables suppression of threshold voltage variation and the resulting device are disclosed. Embodiments include providing STI regions in a silicon wafer; performing a deep well implantation of a dopant into the silicon wafer between STI regions; forming a recess in the doped silicon wafer between the STI regions; performing a shallow well implantation of the dopant into the silicon wafer in the recess; and forming Si:C on the doped silicon wafer in the recess.
Abstract:
A non-planar lateral drift MOS device eliminates the need for a field plate extension, which reduces gate width. In one example, two sources and two comparatively small gates in a raised structure allow for two channels and a dual current with mirrored flows, each traveling into and downward through a center region of a connecting well that connects the substrate with the drain areas and shallow wells containing the source areas, the current then traveling in opposite directions within the substrate region of the connecting well toward the two drains. The source and drain areas may be separate raised structures or isolated areas of a continuous raised structure.
Abstract:
Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a test pad, a device-under-testing having one or more source/drain regions, and a metallization level arranged over the device-under-testing. The metallization level includes one or more interconnect lines that are connected with the test pad. One or more contacts, which are arranged between the metallization level and the device-under-testing, directly connect the one or more interconnect lines with the one or more source/drain regions.
Abstract:
Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a device-under-testing that has one or more source/drain regions and a first metallization level arranged over the device-under-testing. The first metallization level includes one or more first interconnect lines. The structure further includes a contact level having one or more first contacts arranged between the first metallization level and the device-under-testing. The one or more first contacts directly connect the one or more first interconnect lines with the one or more source/drain regions. The structure further includes a second metallization level arranged over the first metallization level. The second metallization level has a first test pad and one or more second interconnect lines connecting the one or more first interconnect lines with the first test pad.
Abstract:
Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a test pad, a device-under-testing having one or more source/drain regions, and a metallization level arranged over the device-under-testing. The metallization level includes one or more interconnect lines that are connected with the test pad. One or more contacts, which are arranged between the metallization level and the device-under-testing, directly connect the one or more interconnect lines with the one or more source/drain regions.
Abstract:
Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a device-under-testing that has one or more source/drain regions and a first metallization level arranged over the device-under-testing. The first metallization level includes one or more first interconnect lines. The structure further includes a contact level having one or more first contacts arranged between the first metallization level and the device-under-testing. The one or more first contacts directly connect the one or more first interconnect lines with the one or more source/drain regions. The structure further includes a second metallization level arranged over the first metallization level. The second metallization level has a first test pad and one or more second interconnect lines connecting the one or more first interconnect lines with the first test pad.
Abstract:
A method of forming SSRW FETs with controlled step height between a field oxide and epitaxially grown silicon and the resulting devices are provided. Embodiments include providing a SiN layer on a substrate, forming first, second, and third spaced STI regions of field oxide through the SiN layer and into the substrate, removing a top portion of the field oxide for each STI region by a controlled deglaze, removing the SiN layer, forming an n-type region in the substrate between the first and second STI regions and a p-type region in the substrate between the second and third STI regions, and epitaxially growing a Si based layer on the substrate over the n-type and p-type regions.
Abstract:
A methodology enabling the formation of steep channel profiles for devices, such as SSRW FETs, having a resultant channel profiles that enables suppression of threshold voltage variation and the resulting device are disclosed. Embodiments include providing STI regions in a silicon wafer; performing a deep well implantation of a dopant into the silicon wafer between STI regions; forming a recess in the doped silicon wafer between the STI regions; performing a shallow well implantation of the dopant into the silicon wafer in the recess; and forming Si:C on the doped silicon wafer in the recess.