Abstract:
A self-aligned interconnect structure includes a fin structure patterned in a substrate; an epitaxial contact disposed over the fin structure; a first metal gate and a second metal gate disposed over and substantially perpendicular to the epitaxial contact, the first metal gate and the second metal gate being substantially parallel to one another; and a metal contact on and in contact with the substrate in a region between the first and second metal gates.
Abstract:
A self-aligned interconnect structure includes a fin structure patterned in a substrate; an epitaxial contact disposed over the fin structure; a first metal gate and a second metal gate disposed over and substantially perpendicular to the epitaxial contact, the first metal gate and the second metal gate being substantially parallel to one another; and a metal contact on and in contact with the substrate in a region between the first and second metal gates.
Abstract:
Integrated circuits and methods for producing the same are provided. In an exemplary embodiment, a method for producing an integrated circuit includes forming a work function layer overlying a substrate and a plurality of dielectric columns. The dielectric columns and the substrate define a short region having a short region width and a long region having a long region width greater than the short region width. The work function layer is recessed in the long region to a long region work function height that is between a dielectric column top surface and a substrate top surface. The work function layer is also recessed in the short region to a short region work function height that is between the dielectric column top surface and the substrate top surface. Recessing the work function layer in the long and short regions is conducted in the absence of lithography techniques.
Abstract:
Integrated circuits and methods for producing the same are provided. In an exemplary embodiment, a method for producing an integrated circuit includes forming a work function layer overlying a substrate and a plurality of dielectric columns. The dielectric columns and the substrate define a short region having a short region width and a long region having a long region width greater than the short region width. The work function layer is recessed in the long region to a long region work function height that is between a dielectric column top surface and a substrate top surface. The work function layer is also recessed in the short region to a short region work function height that is between the dielectric column top surface and the substrate top surface. Recessing the work function layer in the long and short regions is conducted in the absence of lithography techniques.
Abstract:
A self-aligned interconnect structure includes a fin structure patterned in a substrate; an epitaxial contact disposed over the fin structure; a first metal gate and a second metal gate disposed over and substantially perpendicular to the epitaxial contact, the first metal gate and the second metal gate being substantially parallel to one another; and a metal contact on and in contact with the substrate in a region between the first and second metal gates.
Abstract:
A self-aligned interconnect structure includes a fin structure patterned in a substrate; an epitaxial contact disposed over the fin structure; a first metal gate and a second metal gate disposed over and substantially perpendicular to the epitaxial contact, the first metal gate and the second metal gate being substantially parallel to one another; and a metal contact on and in contact with the substrate in a region between the first and second metal gates.
Abstract:
A self-aligned interconnect structure includes a fin structure patterned in a substrate; an epitaxial contact disposed over the fin structure; a first metal gate and a second metal gate disposed over and substantially perpendicular to the epitaxial contact, the first metal gate and the second metal gate being substantially parallel to one another; and a metal contact on and in contact with the substrate in a region between the first and second metal gates.
Abstract:
A self-aligned interconnect structure includes a fin structure patterned in a substrate; an epitaxial contact disposed over the fin structure; a first metal gate and a second metal gate disposed over and substantially perpendicular to the epitaxial contact, the first metal gate and the second metal gate being substantially parallel to one another; and a metal contact on and in contact with the substrate in a region between the first and second metal gates.
Abstract:
A semiconductor structure may include a resistive random access memory device embedded between an upper metal interconnect and a lower metal interconnect in a backend structure of a chip. The resistive random access memory may include a first electrode and a second electrode separated by a dielectric film. A portion of the dielectric film directly above the first electrode may be crystalline. The semiconductor structure may include a stud below and in electrical contact with the first electrode and the lower metal interconnect and a dielectric layer between the upper metal interconnect and the lower metal interconnect. The dielectric layer may separate the upper metal interconnect from the lower metal interconnect. The crystalline portion of the dielectric film may include grain boundaries that extend through an entire thickness of the dielectric film. The crystalline portion of the dielectric film may include grains.
Abstract:
Embodiments of present invention provide a vertical magnetic tunnel junction (MTJ) structure. The structure includes an L-shaped MTJ stack including an L-shaped reference layer conformally on an L-shaped performance enhancing layer; an L-shaped tunnel barrier layer conformally on the L-shaped reference layer; and an L-shaped free layer conformally on the L-shaped tunnel barrier layer, where a vertical portion of the L-shaped MTJ stack is adjacent to a sidewall of a metal stud, the metal stud being directly on top of a metal wire in a dielectric layer. The structure further includes a first and a second electrode contacting a horizontal portion and a vertical portion of the L-shaped MTJ stack. A method of forming the same is also provided.