摘要:
Free standing thickness of materials are fabricated using one or more semiconductor substrates, e.g., single crystal silicon, polysilicon, silicon germanium, germanium, group III/IV materials, and others. A semiconductor substrate is provided having a surface region and a thickness. The surface region of the semiconductor substrate is subjected to a first plurality of high energy particles generated using a linear accelerator to form a region of a plurality of gettering sites within a cleave region, the cleave region being provided beneath the surface region to defined a thickness of material to be detached, the semiconductor substrate being maintained at a first temperature. The surface region of the semiconductor substrate is subjected to a second plurality of high energy particles generated using the linear accelerator, the second plurality of high energy particles being provided to increase a stress level of the cleave region from a first stress level to a second stress level.
摘要:
A system for forming one or more detachable semiconductor films capable of being free-standing. The apparatus includes an ion source to generate a plurality of collimated charged particles at a first energy level. The system includes a linear accelerator having a plurality of modular radio frequency quadrupole (RFQ) elements numbered from 1 through N successively coupled to each other, where N is an integer greater than 1. The linear accelerator controls and accelerates the plurality of collimated charged particles at the first energy level into a beam of charge particles having a second energy level. RFQ element numbered 1 is operably coupled to the ion source. The system includes an exit aperture coupled to RFQ element numbered N of the RFQ linear accelerator. In a specific embodiment, the system includes a beam expander coupled to the exit aperture, the beam expander being configured to process the beam of charged particles at the second energy level into an expanded beam of charged particles. The system includes a process chamber coupled to the beam expander and a workpiece provided within the process chamber to be implanted
摘要:
A method for fabricating free standing thickness of materials using one or more semiconductor substrates, e.g., single crystal silicon, polysilicon, silicon germanium, germanium, group III/IV materials, and others. In a specific embodiment, the present method includes providing a semiconductor substrate having a surface region and a thickness. The method includes subjecting the surface region of the semiconductor substrate to a first plurality of high energy particles generated using a linear accelerator to form a region of a plurality of gettering sites within a cleave region, the cleave region being provided beneath the surface region to defined a thickness of material to be detached, the semiconductor substrate being maintained at a first temperature. In a specific embodiment, the method includes subjecting the surface region of the semiconductor substrate to a second plurality of high energy particles generated using the linear accelerator, the second plurality of high energy particles being provided to increase a stress level of the cleave region from a first stress level to a second stress level. In a preferred embodiment, the semiconductor substrate is maintained at a second temperature, which is higher than the first temperature. The method frees the thickness of detachable material using a cleaving process, e.g., controlled cleaving process.
摘要:
Solar cells and other semiconductor devices are fabricated more efficiently and for less cost using an implanted doping fabrication system. A system for implanting a semiconductor substrate includes an ion source (such as a single-species delivery module), an accelerator to generate from the ion source an ion beam having an energy of no more than 150 kV, and a beam director to expose the substrate to the beam. In one embodiment, the ion source is single-species delivery module that includes a single-gas delivery element and a single-ion source. Alternatively, the ion source is a plasma source used to generate a plasma beam. The system is used to fabricate solar cells having lightly doped photo-receptive regions and more highly doped grid lines. This structure reduces the formation of “dead layers” and improves the contact resistance, thereby increasing the efficiency of a solar cell.
摘要:
An adjustable shadow mask implantation system comprising: an ion source configured to provide ions; and an shadow mask assembly configured to selectively allow ions from the ion source to pass therethrough to a substrate where they are implanted, wherein the shadow mask assembly is configured to adjust between a first position and a second position, wherein the shadow mask assembly enables ion implantation of multiple substantially parallel lines absent any lines with an intersecting orientation with respect to the multiple substantially parallel lines when set in the first position, and wherein the shadow mask assembly enables ion implantation of multiple substantially parallel lines and a line with an intersecting orientation with respect to the multiple substantially parallel lines when set in the second position.
摘要:
A method of forming a solar cell, the method comprising: providing a semiconducting wafer having a pre-doped region; performing a first ion implantation of a dopant into the semiconducting wafer to form a first doped region over the pre-doped region, wherein the first ion implantation has a concentration-versus-depth profile; and performing a second ion implantation of a dopant into the semiconducting wafer to form a second doped region over the pre-doped region, wherein the second ion implantation has a concentration-versus-depth profile different from that of the first ion implantation, wherein at least one of the first doped region and the second doped region is configured to generate electron-hole pairs upon receiving light, and wherein the first and second ion implantations are performed independently of one another.
摘要:
Solar cells and other semiconductor devices are fabricated more efficiently and for less cost using an implanted doping fabrication system. A system for implanting a semiconductor substrate includes an ion source (such as a single-species delivery module), an accelerator to generate from the ion source an ion beam having an energy of no more than 150 kV, and a beam director to expose the substrate to the beam. In one embodiment, the ion source is single-species delivery module that includes a single-gas delivery element and a single-ion source. Alternatively, the ion source is a plasma source used to generate a plasma beam. The system is used to fabricate solar cells having lightly doped photo-receptive regions and more highly doped grid lines. This structure reduces the formation of “dead layers” and improves the contact resistance, thereby increasing the efficiency of a solar cell.
摘要:
An ion implantation system having a grid assembly. The system includes a plasma source configured to provide plasma in a plasma region; a first grid plate having a plurality of apertures configured to allow ions from the plasma region to pass therethrough, wherein the first grid plate is configured to be biased by a power supply; a second grid plate having a plurality of apertures configured to allow the ions to pass therethrough subsequent to the ions passing through the first grid plate, wherein the second grid plate is configured to be biased by a power supply; and a substrate holder configured to support a substrate in a position where the substrate is implanted with the ions subsequent to the ions passing through the second grid plate.
摘要:
A method of ion implantation comprising: providing a plasma within a plasma region of a chamber; positively biasing a first grid plate, wherein the first grid plate comprises a plurality of apertures; negatively biasing a second grid plate, wherein the second grid plate comprises a plurality of apertures; flowing ions from the plasma in the plasma region through the apertures in the positively-biased first grid plate; flowing at least a portion of the ions that flowed through the apertures in the positively-biased first grid plate through the apertures in the negatively-biased second grid plate; and implanting a substrate with at least a portion of the ions that flowed through the apertures in the negatively-biased second grid plate.
摘要:
Solar cells in accordance with the present invention have reduced ohmic losses. These cells include photo-receptive regions that are doped less densely than adjacent selective emitter regions. The photo-receptive regions contain multiple four-sided pyramids that decrease the amount of light lost to the solar cell by reflection. The smaller doping density in the photo-receptive regions results in less blue light that is lost by electron-hole recombination. The higher doping density in the selective emitter region allows for better contacts with the metallic grid coupled to the multiple emitter regions. Preferably, the selective emitter and photo-receptive regions are both implanted using a narrow ion beam containing the dopants.