摘要:
A method and system for cleaving a film of material utilizing thermal flux. The method includes providing a substrate having a face and an underlying cleave region including a prepared initiation region. Additionally, the method includes subjecting the initiation region to a first thermal flux to form a cleave front separating the cleave region of the substrate to a film portion and a bulk portion. The method further includes subjecting an area of the bulk portion substantially in the vicinity of the cleave front to a second thermal flux to cause a temperature difference above and below the cleave region for inducing a propagation of the cleave front expanding the film portion to the area at the expense of the bulk portion. Furthermore, the method includes determining a scan path for the second thermal flux based on the cleave front. Moreover, the method includes scanning the second thermal flux to follow the scan path to further propagate the cleave front.
摘要:
Free standing thickness of materials are fabricated using one or more semiconductor substrates, e.g., single crystal silicon, polysilicon, silicon germanium, germanium, group III/IV materials, and others. A semiconductor substrate is provided having a surface region and a thickness. The surface region of the semiconductor substrate is subjected to a first plurality of high energy particles generated using a linear accelerator to form a region of a plurality of gettering sites within a cleave region, the cleave region being provided beneath the surface region to defined a thickness of material to be detached, the semiconductor substrate being maintained at a first temperature. The surface region of the semiconductor substrate is subjected to a second plurality of high energy particles generated using the linear accelerator, the second plurality of high energy particles being provided to increase a stress level of the cleave region from a first stress level to a second stress level.
摘要:
A photovoltaic cell device, e.g., solar cell, solar panel, and method of manufacture. The device has an optically transparent substrate comprises a first surface and a second surface. A first thickness of material (e.g., semiconductor material, single crystal material) having a first surface region and a second surface region is included. In a preferred embodiment, the surface region is overlying the first surface of the optically transparent substrate. The device has an optical coupling material provided between the first surface region of the thickness of material and the first surface of the optically transparent material. A second thickness of semiconductor material is overlying the second surface region to form a resulting thickness of semiconductor material.
摘要:
A reusable transfer substrate member for forming a tiled substrate structure. The member including a transfer substrate, which has a surface region. The surface region comprises a plurality of donor substrate regions. Each of the donor substrate regions is characterized by a donor substrate thickness and a donor substrate surface region. Each of the donor substrate regions is spatially disposed overlying the surface region of the transfer substrate. Each of the donor substrate regions has the donor substrate thickness without a definable cleave region.
摘要:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
摘要:
A film of material may be formed by providing a semiconductor substrate having a surface region and a cleave region located at a predetermined depth beneath the surface region. During a process of cleaving the film from the substrate, shear in the cleave region is carefully controlled. According to certain embodiments, an in-plane shear component (KII) is maintained near zero, sandwiched between a tensile region and a compressive region. In one embodiment, cleaving can be accomplished using a plate positioned over the substrate surface. The plate serves to constrain movement of the film during cleaving, and together with a localized thermal treatment reduces shear developed during the cleaving process. According to other embodiments, the KII component is purposefully maintained at a high level and serves to guide and drive fracture propagation through the cleave sequence. In one embodiment, the high KII component is achieved by adiabatic heating of silicon through exposure to E-beam radiation, which imparts a highly abrupt thermal gradient and resulting stress at a precisely defined depth in the silicon.
摘要:
A method for fabricating bonded substrate structures, e.g., silicon on silicon. In a specific embodiment, the method includes providing a thickness of single crystal silicon material transferred from a first silicon substrate coupled to a second silicon substrate. In a specific embodiment, the second silicon substrate has a second surface region that is joined to a first surface region from the thickness of single crystal silicon material to form of an interface region having a first characteristic including a silicon oxide material between the thickness of single crystal silicon material and the second silicon substrate. The method includes subjecting the interface region to a thermal process to cause a change to the interface region from the first characteristic to a second characteristic. In a specific embodiment, the second characteristic is free from the silicon oxide material and is an epitaxially formed silicon material provided between the thickness of single crystal silicon material and the second silicon substrate. The method includes maintaining the interface region free of multiple voids during the thermal process to form the epitaxially formed silicon material to electrically couple the thickness of single crystal silicon material to the second silicon substrate.
摘要:
A method for forming a strained layer of semiconductor material, e.g., silicon, germanium, Group III/V, silicon germanium alloy. The method includes providing a non-deformable surface region having a first predetermined radius of curvature, which is defined by R(1) and is defined normal to the surface region. The method includes providing a first substrate (e.g., silicon wafer) having a first thickness. Preferably, the first substrate has a face, a backside, and a cleave plane defined within the first thickness. The method includes a step of overlying the backside of the first substrate on a portion of the surface region having the predetermined radius of curvature to cause a first bend within the thickness of material to form a first strain within a portion of the first thickness. The method provides a second substrate having a second thickness, which has a face and a backside. The method includes a step of overlying the face of the second substrate on a portion of the face of the first substrate to cause a second bend within the thickness of material to form a second strain within a portion of the second thickness. A step of joining the face of the second substrate to the face of the first substrate form a sandwich structure while maintaining the first bend in the first substrate and the second bend in the second substrate. Preferably, joining occurs using a low temperature process such as plasma activated bonding or the like.
摘要:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
摘要:
A method of manufacturing an integrated circuit on semiconductor substrates. The method includes providing a semiconductor substrate characterized by a first lattice with a first structure and a first spacing. The semiconductor substrate has an overlying film of material with a second lattice with a second structure and a second spacing. Preferably, the second spacing placing the film of material in either a tensile or compressive mode across the entirety of the film of material relative to the semiconductor substrate with the first structure and the first spacing. The method includes processing the film of material to form a first region and a second region within the film of material. The first region and the second region are characterized by either the tensile or compressive mode. Preferably, both the first and second regions in their entirety are characterized by either the tensile or compressive mode. The method includes processing the first region of the film of material while maintaining the second region characterized by either the tensile or the compressive mode to form an opposite characteristic from the second region. The opposite characteristic is a tensile mode if the second region is in the compressive mode and the opposite characteristic is the compressive mode if the second region is in the tensile mode.