Abstract:
There is provided a structure in which a phosphorus-nickel layer, a rich phosphorus nickel layer that contains phosphorus or boron higher than this phosphorus-nickel layer, a nickel-tin ally layer, a tin-rich tin alloy layer, and a tin alloy solder layer are formed in sequence on an electrode. Accordingly, adhesiveness between a metal pattern used as the electrode, the wiring, or the pad and the solder can be improved.
Abstract:
There is provided a semiconductor device manufacturing method which comprising the steps of forming solder bumps on an underlying metal film of a semiconductor device, and placing the semiconductor device and the solder layer in a reduced pressure atmosphere containing a formic acid to heat the solder bumps. Accordingly, the solder bumps can be formed without the use of flux not to generate voids in the solder layer, and also the cleaning required after the solder bumps are formed can be omitted.
Abstract:
A semiconductor device has a resin package layer on a principal surface of a semiconductor chip, on which a number of bump electrodes are formed, wherein the semiconductor device has a chamfer surface or a stepped surface on a top edge part such that the external shock or stress applied to such an edge part is dissipated by the chamfer surface of the stepped surface.
Abstract:
A method includes a resin sealing step of placing, in a cavity 28 of a mold 20, a substrate 16 to which semiconductor elements 11 on which bumps 12 are arranged, a resin sealing step of supplying resin 35 to positions of the bumps 12 so that a resin layer 13 sealing the bumps 12 is formed, a protruding electrode exposing step of exposing at least ends of the bumps 12 sealed by the resin layer 13 so that ends of the bumps 12 are exposed from the resin layer 13, and a separating step of cutting the substrate 16 together with the resin layer 13 so that the semiconductor elements 11 are separated from each other.
Abstract:
There is provided a structure in which a phosphorusnullnickel layer, a rich phosphorus nickel layer that contains phosphorus or boron higher than this phosphorusnullnickel layer, a nickelnulltin ally layer, a tin-rich tin alloy layer, and a tin alloy solder layer are formed in sequence on an electrode. Accordingly, adhesiveness between a metal pattern used as the electrode, the wiring, or the pad and the solder can be improved.
Abstract:
A plurality of chips divided from a semiconductor wafer having a plurality of semiconductor integrated circuits formed on a front surface of the wafer, are prepared, front surfaces of the chips being bonded to a first wafer sheet. The back and side surfaces of each chip bonded to the first wafer sheet are covered with a reinforcing thin film. Each of the plurality of chips is removed from the first wafer sheet. The flexural strength of a chip can be suppressed from being lowered by chipping and chip cracks.
Abstract:
A semiconductor module includes a plurality of semiconductor devices each including a circuit substrate carrying thereon a single memory semiconductor chip and a socket for holding the semiconductor devices detachably.
Abstract:
A group of wires that bonds the first semiconductor chip and the second semiconductor chip together and extends on the first semiconductor chip is formed of a single plated film through plating in one continuous process. The second semiconductor chip is then bonded onto the first semiconductor chip to complete a semiconductor package.
Abstract:
A semiconductor device has a resin package layer on a principal surface of a semiconductor chip, on which a number of bump electrodes are formed, wherein the semiconductor device has a chamfer surface or a stepped surface on a top edge part such that the external shock or stress applied to such an edge part is dissipated by the chamfer surface of the stepped surface.
Abstract:
A method of manufacturing a semiconductor device is provided. The method comprises the steps of: forming a wiring electrically connected to an electrode pad formed on a substrate, the wiring extending on the substrate; forming a post terminal by electroless plating so that the post terminal is electrically connected to the wiring; and providing a sealing resin so as to cover the substrate except a position at which the post terminal is formed.