Abstract:
The present invention provides improved devices such as transparent solar cells. This patent teaches a particularly efficient method of device manufacture based on incorporating the solar cell fabrication into the widely used, high temperature, Float Glass manufacture process.
Abstract:
A semiconductor device comprises a semiconductor substrate, a first electrode formed on a first main surface of the semiconductor substrate, and a second electrode formed on a second main surface of the semiconductor substrate. The semiconductor substrate includes a first region in which a density of oxygen-vacancy defects is greater than a density of vacancy cluster defects, and a second region in which the density of vacancy cluster defects is greater than the density of oxygen-vacancy defects.
Abstract:
A semiconductor device has a resin package layer on a principal surface of a semiconductor chip, on which a number of bump electrodes are formed, wherein the semiconductor device has a chamfer surface or a stepped surface on a top edge part such that the external shock or stress applied to such an edge part is dissipated by the chamfer surface of the stepped surface.
Abstract:
A method is provided for non-thermally nitrided gate formation of high voltage transistor devices. The non-thermally nitrided gate formation is useful in the formation of dual thickness gate dielectric structures. The non-thermally nitrided gate formation comprises nitridation to introduce nitrogen atoms into the gate dielectric layer of the high voltage transistor devices to mitigate leakage associated with the high voltage transistor devices. The nitridation of the gate dielectric layer damages the surface of the gate dielectric layer. The damaged surface of the gate dielectric layer is removed by a relatively low temperature re-oxidation process. The low temperature re-oxidation process minimizes nitrogen loss during a subsequent photoresist stripping process and mitigates film densification, such that the structure can be readily etched by standard etching chemicals in subsequent processing.
Abstract:
A semiconductor device has a resin package layer on a principal surface of a semiconductor chip, on which a number of bump electrodes are formed, wherein the semiconductor device has a chamfer surface or a stepped surface on a top edge part such that the external shock or stress applied to such an edge part is dissipated by the chamfer surface of the stepped surface.
Abstract:
A semiconductor device has a resin package layer on a principal surface of a semiconductor chip, on which a number of bump electrodes are formed, wherein the semiconductor device has a chamfer surface or a stepped surface on a top edge part such that the external shock or stress applied to such an edge part is dissipated by the chamfer surface of the stepped surface.
Abstract:
A semiconductor device has a resin package layer on a principal surface of a semiconductor chip, on which a number of bump electrodes are formed, wherein the semiconductor device has a chamfer surface or a stepped surface on a top edge part such that the external shock or stress applied to such an edge part is dissipated by the chamfer surface of the stepped surface.
Abstract:
A method of manufacturing a semiconductor device having a silicon substrate containing an impurity diffusion layer is disclosed, that comprises the steps of doping impurities to the silicon substrate through a silicon oxide film with a thickness of 2.5 nm or less at an accelerating voltage of 3 keV or less, the silicon oxide film being formed on the silicon substrate and annealing the silicon substrate with the oxide film left.
Abstract:
This invention describes a new method for forming self-aligned silicide for application in MOSFET, and a new structure of MOSFET device featuring elevated source and drain, with the objectives of reducing silicide penetration into the source and drain junctions, of eliminating junction spikes, of obtaining smoother interface between the silicide and the silicon substrate, and of reducing the chance of bridging of the silicides on the gate and on the source and drain. The new structure is made by depositing an amorphous layer of silicon on a silicon substrate already patterned with field oxide, gate oxide, polysilicon gate, and silicon nitride spacer on the gate sidewalls. Novel oxide sidewall spacers are then created by first implanting nitrogen into the horizontal surface of the amorphous silicon layer and subsequently thermally oxidizing the part of the amorphous silicon on the vertical sidewalls that is not exposed to nitrogen implantation. A dopant implantation followed by an annealing at 600.degree. C. in nitrogen converts the deposited silicon layer into elevated source and drains. A refractory metal, such as titanium is then deposited over the substrate and, upon rapid thermal annealing, reacts with the elevated source and drain polysilicon to form silicide without consuming the substrate silicon, and without ill effect on the source/drain junctions in the single crystalline silicon. The chance of silicide bridging is greatly reduced due to the special geometry of the novel sidewall oxide spacers.
Abstract:
A process is disclosed for inhibiting lateral diffusion of dopants in a semiconductive material. At least one conductivity dependent region is formed in the semiconductor, and a blocking layer is provided in overlying relation with the conductivity dependent region. Interstitial sites or vacancies are introduced into the conductivity dependent region in accordance with the diffusion mechanism of a selected dopant, and dopant is diffused into the semiconductor in a direction that is substantially transverse to the semiconductor upper surface while inhibiting with the introduced interstitial sites or vacanies lateral diffusion of the dopant into the conductivity dependent region.