摘要:
A method for detecting a capacity of a battery, such as a traction battery of an electrified vehicle, includes varying a charge current provided to the battery and measuring a terminal voltage of the battery as the charge current is being varied. An estimator, that utilizes voltage feedback based on a model of the battery to provide state and parameter estimations of the battery, is driven with the terminal voltage to estimate a state-of-charge (SOC) of the battery. The capacity of the battery may be detected based in part on the SOC.
摘要:
Method and apparatus are disclosed for monitoring a vehicle power supply system having a primary and a secondary power source. An example vehicle includes a primary power source, a secondary power source comprising a low voltage battery, and a processor. The processor is configured for reducing an output of the primary power source, determining an operational characteristic of the low voltage battery while the output of the primary power source is reduced, and providing an alert based on the operational characteristic.
摘要:
An electrified vehicle high voltage battery pack has series-connected battery units or cells combining to provide the high voltage. To power a low voltage bus (e.g., for low voltage accessories or charging a low voltage battery) in a balanced manner, a plurality of DC/DC converters each has an input coupled to a respective battery unit and the converters have respective outputs coupled in parallel to the low voltage bus. A first loop controller receives an actual bus voltage. The first controller generates a target current in response to the bus voltage adapted to regulate the actual bus voltage to a target voltage less than the high voltage. A second controller distributes the target current into a plurality of allocated current commands for respective converters according to respective states of charge of the battery units connected to the converters.
摘要:
A vehicle having a battery pack with cells arranged in at least groups of two cells in series is disclosed. A controller balances the cells based on a change in voltage across the cells being different than an expected change in voltage. The expected value is based on a current and a time associated with charging or discharging the cells. A controller is disclosed that commands charging and discharging of the battery cells based on a difference between a voltage across the group and the expected value for the group. A method for charging and discharging a battery pack is disclosed. The voltage across a group of cells is measured and compared to an expected value. An imbalance in a cell attribute is estimated according to a difference between the measured voltage and the expected voltage. The voltage across each battery cell is not required.
摘要:
A hybrid or electric vehicle includes a traction battery to store and provide energy for the vehicle. The traction battery includes a number of battery cells. For effective operation of the traction battery, operating parameters, such as state of charge and battery power limits, may need to be known. The operating parameters may be a function of battery cell voltage and impedance parameters. A parameter estimation scheme may use measured cell voltages and a measured traction battery current as inputs. A current measurement bias may be modeled that incorporates measurement bias caused by asynchronous current and voltage measurements. The current measurement bias may be estimated for each cell and the value may differ between cells.
摘要:
Method and apparatus are disclosed for monitoring a vehicle power supply system having a primary and a secondary power source. An example vehicle includes a primary power source, a secondary power source comprising a low voltage battery, and a processor. The processor is configured for reducing an output of the primary power source, determining an operational characteristic of the low voltage battery while the output of the primary power source is reduced, and providing an alert based on the operational characteristic.
摘要:
An apparatus includes a battery state module that determines a battery state of each of a plurality of battery cells forming a battery unit. A battery state includes a health of the battery cell. A battery state of a battery cell differs from a battery state of other battery cells of the battery unit. Each battery cell is connected to a shared bus through a bypass converter that provides power from the battery cell to the shared bus. A charge/discharge modification module determines, based on battery state, an amount to vary a charging characteristic for each battery cell compared to a reference charging characteristic. Each charging characteristic varies as a function of a reference state. A charge/discharge module adjusts charging/discharging of a battery cell of the battery unit based on the charging characteristic of the battery cell.
摘要:
Systems and methods for sensing internal states of vehicle batteries are described. From this internal state information, various physical characteristics of the battery can be measured, calculated or inferred. A vehicle can include an electric motor, a battery to store electrical energy for the electric motor, and a sensor connected to the battery to sense a battery state, to receive an input signal, and to wirelessly transmit an output signal indicating the battery state. The sensor may be passive and built into the structure of the battery. The sensor can be a surface wave acoustic sensor with a magnetic field sensor, which can be a magnetoimpedance sensing device and a temperature sensor.
摘要:
An electric vehicle includes a controller configured to estimate battery capacity in accordance with a first state of charge estimation, a charge integration, and a second state of charge estimation. The first and second state of charge estimations are in accordance with time and temperature constraints and are such that the estimated battery capacity has limited uncertainty. The controller is further configured to generate an output based on the estimated battery capacity.
摘要:
A battery system for powering a vehicle is provided. The system may include a first lithium-ion battery pack having a first total energy capacity and a first power to energy ratio (P/E ratio) and a second lithium-ion battery pack connected in parallel with the first lithium-ion battery pack and having a second total energy capacity that is higher than the first total energy capacity and a second P/E ratio that is lower than the first P/E ratio. A method of controlling the battery system is also provided, and may include controlling an operation of a vehicle according to a total power capability of the first and second battery strings, wherein the total power capability is the sum of a first battery string power capability and a second battery string power capability at a same voltage.