Abstract:
Provided are a transceiver module and a communication apparatus including the same. The transceiver module includes a lower substrate, a thermoelectric device on the lower substrate, and an upper substrate which is disposed on the thermoelectric device and on which high frequency devices cooled by the thermoelectric device are mounted. The upper substrate includes a ceramic printed circuit board (PCB).
Abstract:
Provided are methods of forming a bump and a semiconductor device with the same. The method may include providing a substrate with pads, forming a bump maker layer to cover the pads and include a resin and solder particles, thermally treating the bump maker layer to aggregate the solder particles onto the pads, removing the resin to expose the aggregated solder particles, forming a resin layer to cover the aggregated solder particles, and reflowing the aggregated solder particles to form bumps on the pads.
Abstract:
Provided is a method of fabricating a semiconductor package. The method includes providing a package substrate including a pad, mounting a semiconductor chip with a solder ball on the package substrate to allow the solder ball to be disposed on the pad, filling a space between the package substrate and the semiconductor chip with a underfill resin including a reducing agent comprising a carboxyl group, and irradiating the semiconductor chip with a laser to bond the solder ball to the pad, wherein the bonding of the solder ball to the pad comprises changing a metal oxide layer formed on surfaces of the pad and the solder ball to a metal layer by heat generated by the laser.
Abstract:
Provided is a stack module package including: a first substrate where a first device is mounted, and a second substrate where a second device is mounted. The second substrate has a greater thickness than the first substrate, and the second device has a greater thickness than the first device. The first and second devices are vertically connected to each other. In the stack module package, vertical signal loss between the first and second substrates having different characteristics may be minimized
Abstract:
Provided is a method of fabricating a solder particle including adding a first magnetic bar in a first container including a mixture containing first solder particles formed through a mixing process, disposing the first container in a second container including a second magnetic bar, operating the first magnetic bar and the second magnetic bar, and applying heat to the first container to melt the first solder particles.
Abstract:
Provided is a method for manufacturing a semiconductor package, which includes providing a first substrate, providing, over the first substrate, a second substrate including an active region in which a semiconductor element is disposed and a periphery region surrounding the active region, providing an adhesive membrane between the first and second substrates, and mounting the second substrate on the first substrate, wherein the mounting of the second substrate includes aligning the second substrate on the first substrate by using an alignment member protruding from the periphery region of the second substrate.
Abstract:
Provided is a semiconductor device and a method of manufacturing the same. In the method of manufacturing a semiconductor device, a substrate is prepared which is transparent and has a plurality of first electrodes thereon, and a semiconductor chip having a plurality of second electrodes thereon is disposed on the substrate to allow the first and second electrodes to respectively face each other. A polymer layer including solder particles and an oxidizing agent is formed between the substrate and the semiconductor chip, and the solder particles is locally fused between the first and second electrodes by using a laser beam and a fused solder layer is formed which electrically connects between the first and second electrodes.
Abstract:
Provided is a bonding structure of an electronic equipment including first electrodes extended in a first direction and arranged in a second direction on a stretchable display panel having stretchability, second electrodes extended in a first direction and arranged in a second direction on a substrate and facing the first electrodes, and solder bonding parts interposed between the first electrodes and the second electrodes, facing each other in the second direction, and constituting a plurality of rows in the first direction.