Abstract:
Provided are an optical waveform shaping apparatus and an optical waveform shaping method. According to an embodiment, the optical waveform shaping apparatus includes a multiplexer/demultiplexer (D/MUX) unit demultiplexing an optical signal in which optical signals of a plurality of wavelengths are multiplexed, a micro lens system refracting the demultiplexed optical signal into a collimated beam of light, and a wavelength level controller unit shaping a waveform of the optical signal. The wavelength level controller unit includes a 2D LCoS for adjusting and reflecting an amplitude or a phase value of the demultiplexed optical signal to have a distribution that is desired for each cell, and a controller for controlling the distribution.
Abstract:
An image acquisition apparatus including a beam source, a beam expander, a beam splitter, an interferometer reference arm, a sample, a beam diffuser, a telecentric f-θ lens, a beam scanner, and a beam detector uses a terahertz wave to acquire a surface image and a depth image of the sample.
Abstract:
Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is lower than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.
Abstract:
Disclosed herein is an interconnection apparatus and method using terahertz waves. The interconnection apparatus using terahertz waves according to the present invention includes a first terahertz wave generation unit for generating a first transmission terahertz wave, a center frequency of which is a first center frequency, using photomixing. A second terahertz wave generation unit generates a second transmission terahertz wave, a center frequency of which is a second center frequency different from the first center frequency. A first terahertz wave detection unit detects a first reception terahertz wave corresponding to the first transmission terahertz wave. A second terahertz wave detection unit detects a second reception terahertz wave corresponding to the second transmission terahertz wave.
Abstract:
Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is lower than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.
Abstract:
Provided is an optical device. The optical device includes a substrate having a waveguide region and a mounting region, a planar lightwave circuit (PLC) waveguide including a lower-clad layer and an upper-clad layer on the waveguide region of the substrate and a platform core between the lower-clad layer and the upper-clad layer, a terrace defined by etching the lower-clad layer on the mounting region of the substrate, the terrace including an interlocking part, an optical active chip mounted on the mounting region of the substrate, the optical active chip including a chip core therein, and a chip alignment mark disposed on a mounting surface of the optical active chip. The optical active chip is aligned by interlocking between the interlocking part of the terrace and the chip alignment mark of the optical active chip and mounted on the mounting region.
Abstract:
Provided is a broadband photomixer technology that is a core to generate continuous frequency variable and pulsed terahertz waves. It is possible to enhance light absorptance by applying the transmittance characteristic of a 2D light crystal structure and it is possible to increase the generation efficiency of terahertz waves accordingly. Moreover, it is possible to implement a wide area array type terahertz photomixer by applying an interdigit structure and spatially properly arranging a light crystal structure having various cycles. Accordingly, it is possible to solve difficulty in thermal characteristic and light alignment by mitigating the high light density of a light absorption unit and low photoelectric conversion efficiency is drastically improved. In addition, the radiation pattern of terahertz waves may be electrically controlled through the present invention.
Abstract:
Provided is a terahertz wave generating/detecting apparatus and a method for manufacturing the same. The terahertz wave generating/detecting apparatus includes; a substrate having an active region and a transmitting region; a lower metal layer extending in a first direction on the active region and the transmitting region of the substrate; a graphene layer disposed on the lower metal layer on the active region; and upper metal layers extending in the first direction on the graphene layer of the active region and the substrate in the transmission region, wherein a terahertz wave is generated or amplified by a surface plasmon polariton that is induced on a boundary surface between the graphene layer and the lower metal layer by beated laser light applied to the graphene layer and the metal layer.
Abstract:
Disclosed is an air screen detector device. The air screen detector device includes a display for displaying an air screen image in one direction by using visible light, an infrared light source disposed on the display to provide infrared light in the same direction as that of the visible light, an infrared image sensor disposed on one side of the display and the infrared light source to receive the infrared light reflected by a finger provided in the air screen image disposed on the other side of the infrared light source, a first multifocal lens disposed between the infrared image sensor and the infrared light source to provide the infrared light to the infrared image sensor, and a visible light filter disposed between the first multifocal lens and the infrared image sensor to remove the visible light.
Abstract:
Disclosed is an electro-optic modulator. The electro-optic modulator includes a lower clad layer disposed on a substrate, an optical waveguide disposed on the lower clad layer, traveling-wave electrodes respectively disposed on both sides of the optical waveguide and each having a first distance to the optical waveguide, and ferroelectric blocks disposed between the traveling-wave electrodes and the lower clad layer and each having a second distance to the optical waveguide, which is less than the first distance.