Abstract:
A method of forming a conductive structure in a semiconductor device includes forming a conductive layer on a substrate, forming a conductive layer pattern on the substrate by patterning the conductive layer, forming an oxide layer on the substrate and a portion of the conductive layer, and forming a capping layer on the oxide layer and the conductive layer pattern.
Abstract:
A method of forming a polysilicon layer includes providing a silicon precursor onto an object loaded in a process chamber to form a seed layer. The silicon precursor includes a nitrogen containing silicon precursor and a chlorine containing silicon precursor. The method further includes providing a silicon source on the seed layer.
Abstract:
A method of manufacturing a vertical memory device includes forming alternating and repeating insulating interlayers and sacrificial layers on a substrate, the sacrificial layers including polysilicon or amorphous silicon, forming channel holes through the insulating interlayers and the sacrificial layers, forming channels in the channel holes, etching portions of the insulating interlayers and the sacrificial layers between adjacent channels to form openings, removing the sacrificial layers to form gaps between the insulating interlayers, and forming gate lines in the gaps.
Abstract:
A vertical memory device includes a channel array, a charge storage layer structure, multiple gate electrodes and a dummy pattern array. The channel array includes multiple channels, each of which is formed on a first region of a substrate and is formed to extend in a first direction substantially perpendicular to a top surface of the substrate. The charge storage layer structure includes a tunnel insulation layer pattern, a charge storage layer pattern and a blocking layer pattern, which are sequentially formed on a sidewall of each channel in the second direction substantially parallel to the top surface of the substrate. The gate electrodes arranged on a sidewall of the charge storage layer structure and spaced apart from each other in the first direction. The dummy pattern array includes multiple dummy patterns, each of which is formed on a second region adjacent the first region of the substrate and is formed to extend in the first direction.
Abstract:
A vertical memory device may include a substrate, a first selection line on the substrate, a plurality of word lines on the first selection line, a second selection line on the plurality of word lines, and a semiconductor channel. The first selection line may be between the plurality of word lines and the substrate, and the plurality of word lines may be between the first and second selection lines. Moreover, the first and second selection lines and the plurality of word lines may be spaced apart in a direction perpendicular with respect to a surface of the substrate. The semiconductor channel may extend away from the surface of the substrate adjacent sidewalls of the first and second selection lines and the plurality of word lines. In addition, portions of the semiconductor channel adjacent the second selection line may be doped with indium and/or gallium. Related methods are also discussed.
Abstract:
Three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor devices include an electrode structure with sequentially-stacked electrodes disposed on a substrate, semiconductor patterns penetrating the electrode structure, and memory elements including a first pattern and a second pattern interposed between the semiconductor patterns and the electrode structure, the first pattern vertically extending to cross the electrodes and the second pattern horizontally extending to cross the semiconductor patterns.
Abstract:
A vertical memory device including a substrate including first regions and a second region; a plurality of channels in the first regions, the plurality of channels extending in a first direction substantially perpendicular to a top surface of the substrate; a charge storage structure on a sidewall of each channel in a second direction substantially parallel to the top surface of the substrate; a plurality of gate electrodes in the first regions, the plurality of gate electrodes arranged on a sidewall of the charge storage structure and spaced apart from each other in the first direction; and a plurality of supporters in the second region, the plurality of supporters spaced apart from each other in a third direction substantially perpendicular to the first direction and the second direction, the plurality of supporters contacting a sidewall of at least one gate electrode.
Abstract:
In a method for manufacturing a semiconductor device, a silicon oxide layer is formed on a substrate. The silicon oxide layer is treated with a solution comprising ozone. Then, a conductive layer is formed on the silicon oxide layer treated with the solution.
Abstract:
Provided is a method of fabricating a semiconductor memory device. The method includes alternately stacking interlayer insulating layers and sacrificial layers on a substrate, forming a channel hole exposing the substrate through the interlayer insulating layers and the sacrificial layers, sequentially forming a blocking insulating layer, an electric charge storage layer and a channel layer on a substrate exposed on a sidewall of the channel hole and in the channel hole wherein the blocking insulating layer includes a first blocking insulating layer and a second blocking insulating layer, selectively removing the sacrificial layers to expose the first blocking insulating layer and then forming a gap, removing the first blocking insulating layer exposed in the gap, forming first blocking insulating patterns between the interlayer insulating layers and the second blocking insulating layer, and forming a gate electrode in the gap.
Abstract:
A method of manufacturing a three-dimensional semiconductor memory device is provided. The method includes alternately stacking a first insulation film, a first sacrificial film, alternating second insulation films and second sacrificial films, a third sacrificial film and a third insulation film on a substrate. A channel hole is formed to expose a portion of the substrate while passing through the first insulation film, the first sacrificial film, the second insulation films, the second sacrificial films, the third sacrificial film and the third insulation film. The method further includes forming a semiconductor pattern on the portion of the substrate exposed in the channel hole by epitaxial growth. Forming the semiconductor pattern includes forming a lower epitaxial film, doping an impurity into the lower epitaxial film, and forming an upper epitaxial film on the lower epitaxial film. Forming the lower epitaxial film, doping the impurity into the lower epitaxial film and forming the upper epitaxial film are all performed in-situ, and the semiconductor pattern includes a doped region and an undoped region.