摘要:
A semiconductor device includes a substrate, a nanowire, a first structure, and a second structure. The nanowire is suspended between the first structure and the second structure, where the first structure and the second structure overly the substrate, where the nanowire includes a layer on a surface of the nanowire, where the layer includes at least one of silicide and carbide, where the layer has a substantially uniform shape.
摘要:
In one exemplary embodiment, a method includes: providing a semiconductor device having a substrate, a nanowire, a first structure and a second structure, where the nanowire is suspended between the first structure and the second structure, where the first structure and the second structure overly the substrate; and performing atomic layer deposition to deposit a film on at least a portion of the semiconductor device, where performing atomic layer deposition to deposit the film includes performing atomic layer deposition to deposit the film on at least a surface of the nanowire.
摘要:
A semiconductor device includes a substrate, a nanowire, a first structure, and a second structure. The nanowire is suspended between the first structure and the second structure, where the first structure and the second structure overly the substrate, where the nanowire includes a layer on a surface of the nanowire, where the layer includes at least one of silicide and carbide, where the layer has a substantially uniform shape.
摘要:
In one exemplary embodiment, a method includes: providing a semiconductor device having a substrate, a nanowire, a first structure and a second structure, where the nanowire is suspended between the first structure and the second structure, where the first structure and the second structure overly the substrate; and performing atomic layer deposition to deposit a film on at least a portion of the semiconductor device, where performing atomic layer deposition to deposit the film includes performing atomic layer deposition to deposit the film on at least a surface of the nanowire.
摘要:
Multi-crystalline silicon processing techniques are provided. In one aspect, a method for roughening a multi-crystalline silicon surface is provided. The method includes the following steps. The multi-crystalline silicon surface is coated with a diblock copolymer. The diblock copolymer is annealed to form nanopores therein. The multi-crystalline silicon surface is etched through the nanopores in the diblock copolymer to roughen the multi-crystalline silicon surface. The diblock copolymer is removed. A multi-crystalline silicon substrate with a roughened surface having a plurality of peaks and troughs is also provided, wherein a distance from one peak to an adjacent peak on the roughened surface is from about 20 nm to about 400 nm.
摘要:
Multi-crystalline silicon processing techniques are provided. In one aspect, a method for roughening a multi-crystalline silicon surface is provided. The method includes the following steps. The multi-crystalline silicon surface is coated with a diblock copolymer. The diblock copolymer is annealed to form nanopores therein. The multi-crystalline silicon surface is etched through the nanopores in the diblock copolymer to roughen the multi-crystalline silicon surface. The diblock copolymer is removed. A multi-crystalline silicon substrate with a roughened surface having a plurality of peaks and troughs is also provided, wherein a distance from one peak to an adjacent peak on the roughened surface is from about 20 nm to about 400 nm.
摘要:
In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
摘要:
In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
摘要:
A method for forming a field effect transistor (FET) includes forming a dummy gate on a top semiconductor layer of a semiconductor on insulator substrate; forming source and drain regions in the top semiconductor layer, wherein the source and drain regions are located in the top semiconductor layer on either side of the dummy gate; forming a supporting material over the source and drain regions adjacent to the dummy gate; removing the dummy gate to form a gate opening, wherein a channel region of the top semiconductor layer is exposed through the gate opening; thinning the channel region of the top semiconductor layer through the gate opening; and forming gate spacers and a gate in the gate opening over the thinned channel region.
摘要:
A Schottky junction silicon nanowire field-effect biosensor/molecule detector with a nanowire thickness of 10 nanometer or less and an aligned source/drain workfunction for increased sensitivity. The nanowire channel is coated with a surface treatment to which a molecule of interest absorbs, which modulates the conductivity of the channel between the Schottky junctions sufficiently to qualitatively and quantitatively measure the presence and amount of the molecule.