Abstract:
Angle of arrival and/or range estimation within a wireless communication device. Appropriate processing of communications received by a wireless communication device is performed to determine the angle of arrival of the communication (e.g., with respect to some coordinate basis of the wireless communication device). Also, appropriate processing of the communications may be performed in accordance with range estimation as performed by the wireless communication device to determine the distance between the transmitting and receiving wireless communication devices. There are two separate modes of packet processing operations that may be performed: (1) when contents of the received packet are known, and (2) when contents of the received packet are unknown. The wireless communication device includes a number of antenna, and a switching mechanism switches from among the various antennae capitalizing on the spatial diversity of the antennae to generate a multi-antenna signal.
Abstract:
Certain embodiments of the invention may be found in a method and system for antenna and radio front-end topologies for a system-on-a-chip (SOC) device that combines Bluetooth and IEEE 802.11 b/g WLAN technologies. A single chip radio device that supports WLAN and Bluetooth technologies receives a WLAN signal in a WLAN processing circuitry of the radio front-end and in a Bluetooth processing circuitry of the radio front-end. Signals generated by the WLAN processing circuitry and the Bluetooth processing circuitry from the received WLAN signal may be combined in a diversity combiner that utilizes selection diversity gain combining or maximal ratio combining (MRC). When a generated signal is below a threshold value, the signal may be dropped from the combining operation. A single antenna usage model may be utilized with the single chip radio device front-end topology to support WLAN and Bluetooth communications.
Abstract translation:本发明的某些实施例可以在组合蓝牙和IEEE 802.11b / g WLAN技术的用于片上系统(SOC)设备的天线和无线电前端拓扑的方法和系统中找到。 支持WLAN和蓝牙技术的单芯片无线电设备在无线电前端的WLAN处理电路和无线电前端的蓝牙处理电路中接收WLAN信号。 由WLAN处理电路和蓝牙处理电路从接收到的WLAN信号生成的信号可以组合在利用选择分集增益组合或最大比组合(MRC)的分集组合器中。 当生成的信号低于阈值时,可以从组合操作中丢弃该信号。 单个天线使用模型可以与单芯片无线电设备前端拓扑结合使用以支持WLAN和蓝牙通信。
Abstract:
Hybrid location determination for wireless communication device. Various services that may be used by a wireless communication device within a particular location may be referred to as location based services (LBS). As such, means by which the location of a wireless communication device that may use such available services, within such a locale, is made by using more than one type of location determination approach. For example, a wireless communication device includes communication capability (e.g., RX and TX) in accordance with a first communication protocol (e.g., Bluetooth) and also includes a communication capability (e.g., RX only) in accordance with a second communication protocol (e.g., WiFi/WLAN (Wireless Local Area Network)). The RX capability is operative to assist in location determination for the wireless communication device based on knowledge of at least one wireless communication device that communicates with the wireless communication device.
Abstract:
A communication device includes a first and second near-field wireless (NFW) module operating with a first and second protocol, respectively. A module and method to improve the operational efficiency of the first and second NFW modules are disclosed. Due to close proximity between the first and second NFW modules in the communication device, an undesirable parasitic inductive coupling can occur that can degrade the operational performance of the modules. The first NFW module can be configured to control inductive coupling of the second NFW module when an electromagnetic (EM) field operating with the first protocol is detected. Additionally, the second NFW module can be configured to control inductive coupling of the first NFW module when an EM field operating with the second protocol is detected. Controlling the inductive coupling of each module can be performed by means of detuning an inductive coupling element of each module.
Abstract:
A plurality of encrypted packets having common payload data are received, wherein each of the plurality of encrypted packets includes a corresponding parity check field, and wherein a corresponding parity check syndrome for each of the plurality of encrypted packets indicates at least one bit error. A payload portion of each of the plurality of encrypted packets is decrypted to generate a plurality of decrypted payload portions. At least one chase coding technique is used to generate a corrected decrypted payload, based on at least one candidate bit error position and further based on the corresponding parity check syndrome for at least one of the plurality of encrypted packets.
Abstract:
Various examples are provided for related to Bluetooth voice quality improvement. In one example, among others, a method includes determining whether a packet payload is received during a transmission period of a collocated interface based at least in part upon signaling from the collocated interface and replacing at least a portion of the payload with estimated payload data based at least in part upon whether the payload was received during the transmission period. In another example, a communication device includes a first interface that supports BT communications and a collocated second interface. The first interface is operable to replace at least a portion of a payload of a BT packet with estimated payload data based at least in part upon signaling from the second interface that indicates whether at least a portion of the BT packet was received during a transmission period of the second interface.
Abstract:
Methods and systems for enabling coexistence of multiple potentially interfering wireless components in a device are provided. A device may include a wireless module using a proprietary protocol and one or more modules using standardized protocols. The device further includes a coexistence arbitration module configured to arbitrate access to a shared communication medium among the wireless modules based on assertion of medium access requests by the modules and the associated priority of the asserted medium access requests. When multiple medium access requests have the same priority, precedence for access to the shared medium is determined based on additional criteria. The coexistence arbitration module may be a separate module or may be integrated into another module or distributed among the modules. The device may include a host processor for altering transmission characteristics of a module to increase the likelihood that another module can receive data within a reasonable time period.
Abstract:
Disclosed are various embodiments for providing wireless communication. A Bluetooth (BT) communication protocol and a Wireless Local Area Network (WLAN) communication protocol are enabled in a station. A WLAN fragmentation threshold utilized by the WLAN communication protocol is modified based on a WLAN modulation rate and an HV3 frame duration that is utilized by the BT communication protocol.
Abstract:
Various methods and systems are provided for time domain coexistence of RF signals. In one example, among others, a method includes obtaining access to a WLAN channel during a free period of a coexisting cellular connection, providing a RDG to allow another device to transmit for a duration corresponding to at least a portion of a TXOP, and receiving a transmission during the duration. In another example, a method includes obtaining access to a WLAN channel during a transmission period of a coexisting cellular connection and providing a protection frame to defer transmissions from another device for a duration corresponding to at least a portion of a TXOP. In another example, a method includes determining a shift of a BT transaction based at least in part upon a schedule of cellular communications and shifting at least a portion of the BT transaction based upon the determined shift.
Abstract:
A circuit includes a first wireless interface circuit that transceives packetized data with a first external device in accordance with a first wireless communication protocol. A second wireless interface circuit transceives packetized data with a second external device in accordance with a second wireless communication protocol and wherein the operation of the second wireless interface circuit interferes with the operation of the first wireless interface circuit. A processing module selectively preempts use of the second frequency spectrum by the second external device using a plurality of preemption modes including a first preemption mode and a second preemption mode.