Abstract:
A shaped catalyst body for heterogeneously catalyzed reactions of organic compounds in the gas-phase in fixed-bed reactors, containing an element from group 3 to 12 of the Periodic Table of the Elements, and having a three-lobed structure with a lateral surface around the lobes, a top cover and a bottom cover, as well as three continuous holes running from one cover side to the other cover side, wherein each hole is assigned to one lobe and wherein the cover sides have outwardly shaped arches, its production and a process for its use in the heterogeneously catalyzed reaction of an organic compound in the gas phase.
Abstract:
Process for producing a multimetal oxide catalyst comprising molybdenum, chromium and at least one further metal by mixing of a pulverulent multimetal oxide comprising molybdenum and at least one further metal but no chromium with pulverulent chromium(III) oxide and thermal treatment of the resulting pulverulent mixture in the presence of oxygen at a temperature in the range from 350° C. to 650° C.
Abstract:
A catalyst support comprising at least 85 wt.-% of alpha-alumina and having a pore volume of at least 0.40 mL/g, as determined by mercury porosimetry, and a BET surface area of 0.5 to 5.0 m2/g, wherein the catalyst support is a tableted catalyst support comprising, based on the total weight of the catalyst support, less than 500 ppmw of potassium. The invention moreover relates to a process for producing a tableted alpha-alumina catalyst support, which comprises i) forming a free-flowing feed mixture comprising i-a) at least one aluminum compound which is thermally convertible to alpha-alumina, the aluminum compound comprising a transition alumina and/or an alumina hydrate; and i-b) 30 to 120 wt.-%, relative to i-a), of a pore-forming material; ii) tableting the free-flowing feed mixture to obtain a compacted body; and iii) heat treating the compacted body at a temperature of at least 1100° C., to obtain the tableted alpha-alumina catalyst support. The invention further relates to a compacted body obtained by tableting a free-flowing feed mixture which comprises, relative to the total weight of the free-flowing feed mixture, a) at least one aluminum compound which is thermally convertible to alpha-alumina, the aluminum compound comprising a transition alumina and/or an alumina hydrate; and b) 30 to 120 wt.-%, relative to a), of a pore-forming material. The invention moreover relates to a shaped catalyst body for producing ethylene oxide by gas-phase oxidation of ethylene, comprising at least 12 wt.-% of silver, relative to the total weight of the catalyst, deposited on the tableted alpha-alumina catalyst support. The invention also relates to a process for producing ethylene oxide by gas-phase oxidation of ethylene, comprising reacting ethylene and oxygen in the presence of the shaped catalyst body. The invention allows for the use of specific pore-forming materials that are particularly suitable for obtaining an advantageous pore structure while allowing for a catalyst support having high purity.
Abstract:
A process for preparing acrylic acid, comprising (i) providing a stream S4 comprising a formaldehyde source and acetic acid; (ii) contacting stream S4 with an aldol condensation catalyst comprising a zeolitic material comprising aluminum in the framework structure to obtain a stream S6 comprising acrylic acid, the framework structure of the zeolitic material in (ii) comprising YO2 and Al2O3, and Y being a tetravalent element; where the total content of alkali metal and alkaline earth metal in the zeolitic material in (ii), calculated as alkali metal oxide and alkaline earth metal oxide, is from 0% to 0.1% by weight, based in each case on the total weight of the zeolitic material, and where the aldol condensation catalyst in (ii) comprises, outside the framework structure of the zeolitic material present therein, from 0% to 1% by weight of vanadium, based on vanadium as vanadium(V) oxide.
Abstract translation:一种制备丙烯酸的方法,包括(i)提供包含甲醛源和乙酸的料流S4; (ii)使流体S4与包含框架结构中包含铝的沸石材料的醛醇缩合催化剂接触以获得包含丙烯酸的流S6,(ii)中的沸石材料的框架结构包含YO 2和Al 2 O 3,Y是 四价元素 其中(ii)中的沸石材料中的碱金属和碱土金属的总含量以碱金属氧化物和碱土金属氧化物计算为0〜0.1重量%,基于每种情况下的总重量 沸石材料,并且其中(ii)中的醛醇缩合催化剂在其中存在的沸石材料的骨架结构外包含以钒为氧化钒(V)的钒为0至1重量%的钒。
Abstract:
A process for the continuous production of either acrolein or acrylic acid as the target product from propene comprising a catalyzed gas phase partial oxidation of propene to yield a product gas containing the target product, transferring the target product in a separating zone from the product gas into the liquid phase and conducting out of the separating zone a stream of residual gas the major portion of which is returned into the partial oxidation and the remaining portion of said stream is purged from the process as off-gas from which synthesis gas can be produced or which can be added to synthesis gas produced otherwise.
Abstract:
A tableted catalyst support, characterized by an alpha-alumina content of at least 85 wt.-%, a pore volume of at least 0.40 mL/g, as determined by mercury porosimetry, and a BET surface area of 0.5 to 5.0 m2/g. The tableted catalyst support is an alpha-alumina catalyst support obtained with high geometrical precision and displaying a high overall pore volume, thus allowing for impregnation with a high amount of silver, while exhibiting a surface area sufficiently large so as to provide optimal dispersion of catalytically active species, in particular metal species. The invention further provides a process for producing a tableted alpha-alumina catalyst support, which comprises i) forming a free-flowing feed mixture comprising, based on inorganic solids content, at least 50 wt.-% of a transition alumina; ii) tableting the free-flowing feed mixture to obtain a compacted body; and iii) heat treating the compacted body at a temperature of at least 1100° C., preferably at least 1300° C., more preferably at least 1400° C., in particular at least 1450° C., to obtain the tableted alpha-alumina catalyst support. The invention moreover relates to a compacted body obtained by tableting a free-flowing feed mixture which comprises, based on inorganic solids content, at least 50 wt.-% of a transition alumina having a loose bulk density of at most 600 g/L, a pore volume of at least 0.6 mL/g, as determined, and a median pore diameter of at least 15 nm. The invention moreover relates to a shaped catalyst body for producing ethylene oxide by gas-phase oxidation of ethylene, comprising at least 15 wt.-% of silver, relative to the total weight of the catalyst, deposited on the tableted alpha-alumina catalyst support. The invention moreover relates to a process for producing ethylene oxide by gas-phase oxidation of ethylene, comprising reacting ethylene and oxygen in the presence of the shaped catalyst body.
Abstract:
The present invention relates to a process for preparing acrylic acid comprising (i) providing a stream comprising a formaldehyde source and acetic acid and (ii) contacting this stream with an aldol condensation catalyst comprising a zeolitic material, wherein the framework structure of the zeolitic material in (ii) includes Si and O, and has a molar Al:Si ratio of 0:1 to 0.001:1, and wherein the framework structure of the zeolitic material in (ii), in addition to Si and any Al, comprises one or more elements selected from the group consisting of tetravalent elements Y other than Si and trivalent elements X other than Al.
Abstract:
A process for producing an eggshell catalyst, comprising the coating of the outer surface of a geometric shaped support body with a catalytically active multielement oxide or a powder P, wherein the powder P, after being coated, is converted by thermal treatment to a catalytically active multielement oxide, and one or more liquid binders, wherein the coating is conducted in a horizontal mixer and the Froude number during the coating in the horizontal mixer is from 0.0160 to 0.1200.
Abstract:
A process for producing a catalytically active multielement oxide comprising the elements Mo, W, V and Cu, wherein at least one source of the elemental constituents W of the multielement oxide is used to produce an aqueous solution, the resultant aqueous solution is admixed with sources of the elemental constituents Mo and V of the multielement oxide, drying of the resultant aqueous solution produces a powder P, the resultant powder P is optionally used to produce geometric shaped precursor bodies, and the powder P is or the geometric shaped precursor bodies are subjected to thermal treatment to form the catalytically active composition, wherein the aqueous solution used for drying comprises from 1.6% to 5.0% by weight of W and from 7.2% to 26.0% by weight of Mo, based in each case on the total amount of aqueous solution.