Abstract:
Method for the preparation of a metal exchanged crystalline microporous metalloaluminophosphate or mixtures containing metal exchanged microporous metalloaluminophosphates materials comprising the steps of providing a dry mixture containing a) one or more metalloaluminophosphates starting materials that exhibit ion exchange capacity, and b) one or more metal compounds; heating the mixture in a gaseous atmosphere containing ammonia to a temperature (less than 300 C) and for a time sufficient to initiate and perform a solid state ion exchange of ions of the metal compound and ions of the crystalline microporous material; and obtaining the metal-exchanged microporous metalloaluminophosphate material or mixtures containing the metal-exchanged microporous metalloaluminophosphate material.
Abstract:
A new crystalline zinc (silico)aluminophosphate molecular sieve designated SSZ-90 is disclosed. SSZ-90 is isostructural with the DFO framework type and is synthesized using an ionic liquid as both the solvent and the structure directing agent. The ionic liquid [Q+A−] comprises a cation (Q+) selected from the group consisting of 1,3-diisopropylimidazolium, 1,3-diisobutylimidazolium, and 1-isopropyl-3-isobutylimidazolium and an anion (A−) which is not detrimental to the formation of the molecular sieve.
Abstract:
A cold start catalyst is disclosed. The cold start catalyst comprises a zeolite catalyst and a supported platinum group metal catalyst. The zeolite catalyst comprises a base metal, a noble metal, and a zeolite. The supported platinum group metal catalyst comprises one or more platinum group metals and one or more inorganic oxide carriers. The invention also includes an exhaust system comprising the cold start catalyst. The cold start catalyst and the process result in improved NOx storage and NOx conversion, improved hydrocarbon storage and conversion, and improved CO oxidation through the cold start period.
Abstract:
A new crystalline zinc (silico)aluminophosphate molecular sieve designated SSZ-90 is disclosed. SSZ-90 is isostructural with the DFO framework type and is synthesized using an ionic liquid as both the solvent and the structure directing agent. The ionic liquid [Q+A−] comprises a cation (Q+) selected from the group consisting of 1,3-diisopropylimidazolium, 1,3-diisobutylimidazolium, and 1-isopropyl-3-isobutylimidazolium and an anion (A−) which is not detrimental to the formation of the molecular sieve.
Abstract:
A process for preparing acrylic acid, comprising (i) providing a stream S4 comprising a formaldehyde source and acetic acid; (ii) contacting stream S4 with an aldol condensation catalyst comprising a zeolitic material comprising aluminum in the framework structure to obtain a stream S6 comprising acrylic acid, the framework structure of the zeolitic material in (ii) comprising YO2 and Al2O3, and Y being a tetravalent element; where the total content of alkali metal and alkaline earth metal in the zeolitic material in (ii), calculated as alkali metal oxide and alkaline earth metal oxide, is from 0% to 0.1% by weight, based in each case on the total weight of the zeolitic material, and where the aldol condensation catalyst in (ii) comprises, outside the framework structure of the zeolitic material present therein, from 0% to 1% by weight of vanadium, based on vanadium as vanadium(V) oxide.
Abstract translation:一种制备丙烯酸的方法,包括(i)提供包含甲醛源和乙酸的料流S4; (ii)使流体S4与包含框架结构中包含铝的沸石材料的醛醇缩合催化剂接触以获得包含丙烯酸的流S6,(ii)中的沸石材料的框架结构包含YO 2和Al 2 O 3,Y是 四价元素 其中(ii)中的沸石材料中的碱金属和碱土金属的总含量以碱金属氧化物和碱土金属氧化物计算为0〜0.1重量%,基于每种情况下的总重量 沸石材料,并且其中(ii)中的醛醇缩合催化剂在其中存在的沸石材料的骨架结构外包含以钒为氧化钒(V)的钒为0至1重量%的钒。
Abstract:
The present invention relates to a catalytic converter which comprises a molecular sieve and a mixed oxide, and to a method for the selective catalytic reduction of nitrogen oxides in exhaust gases of diesel engines.
Abstract:
The disclosure describes a new class of isomorphously metal-substituted aluminophosphate materials with high phase purity that are capable of performing selective Brönsted acid catalyzed chemical transformations, such as transforming alcohols to olefins, with high conversions and selectivities using mild conditions. Isomorphous substitutions of functional metal ions for both the aluminum ions and the phosphorous ions were successful in various AlPO structures, along with multiple metal substitutions into a single aluminum site and/or a phosphorous site. This invention can be used towards the catalytic conversion of hydroxylated compounds of linear and/or branched moiety with the possibility of being substituted to their respective hydrocarbon products, preferably light olefins containing 2 to 10 carbon atoms, among other chemistries.
Abstract:
A transalkylation catalyst for the transalkylation of a heavy reformate is provided. The catalyst includes two solid acid zeolites having different physical and chemical properties, and at least three metals selected from the group 4 lanthanthides, and the elements found in groups 6 and 10 of the periodic table.
Abstract:
The disclosure describes a new class of isomorphously metal-substituted aluminophosphate materials with high phase purity that are capable of performing selective Brönsted acid catalyzed chemical transformations, such as transforming alcohols to olefins, with high conversions and selectivities using mild conditions. Isomorphous substitutions of functional metal ions for both the aluminum ions and the phosphorous ions were successful in various AlPO structures, along with multiple metal substitutions into a single aluminum site and/or a phosphorous site. This invention can be used towards the catalytic conversion of hydroxylated compounds of linear and/or branched moiety with the possibility of being substituted to their respective hydrocarbon products, preferably light olefins containing 2 to 10 carbon atoms, among other chemistries.
Abstract:
A method for preparing molecular sieves with a Linde Type A (LTA) topology structure, and molecular sieves obtained thereby are described wherein a structure directing agent comprising a triquaternary cation is contacted with a source of a first oxide of a first tetravalent element or a source of a first oxide of a trivalent element; and a source of an oxide of a pentavalent elements.