摘要:
Disclosed are a zeolite-like material, and a preparation method and use thereof. In the disclosure, cyclic molecules of the zeolite-like material form a closed cage-like cavity structure with each other. The zeolite-like material is synthesized using an inorganic solid waste as a raw material.
摘要:
The invention relates to a process for dehydration of a mono-alcohol, or of a mixture of at least two mono-alcohols, having at least 2 carbon atoms and at most 7 carbon atoms into olefins having the same number of carbons, wherein the process uses a catalyst composition that comprises a modified crystalline aluminosilicate has an acidity between 350 and 500 μmol/g that comprises, and further wherein the catalyst composition is obtained by a process comprising the steps of providing a crystalline aluminosilicate having a Si/Al framework molar ratio greater than 10; and steaming said crystalline aluminosilicate, or said shaped and/or calcined crystalline aluminosilicate at a temperature ranging from 100° C. to 380° C.; and under a gas phase atmosphere, without liquid, containing from 5 wt % to 100 wt % of steam; at a pressure ranging from 2 to 200 bars; at a partial pressure of H2O from 2 bars to 200 bars; and said steaming being performed during at least 30 min and up to 144 h.
摘要:
Disclosed herein are an apparatus and a method for mixing and/or mulling a sample, the apparatus comprising at least one container made of a flexible material and containing a sample, means for holding the container, and means for impacting the container, wherein the means for holding and the means for impacting are movable relative to each other, and wherein the means for holding, the means for impacting, and the container are arranged such that the means for impacting and the container can repeatedly collide, whereby an energy of collision can be imparted to the sample, thereby mixing and/or mulling the sample. Also disclosed is an assembly for performing high throughput experiments including the apparatus for mixing and/or mulling a sample and an extruder configured to receive a sample weighing less than 100 grams.
摘要:
Trimethylhexamethylenediamine is produced by hydrogenating a trimethylhexamethylenedinitrile-comprising mixture in the presence of at least ammonia and hydrogen and a catalyst in the presence or absence of solvent, wherein the catalyst has the following properties: I. after activation the catalyst in its entirety has the following composition in weight percent (wt %), wherein the proportions add up to 100 wt %, based on the metals present: cobalt: 55 to 95 wt %, aluminum: 5 to 45 wt %, chromium: 0 to 3 wt %, and nickel: 0 to 7 wt %, and II. the catalyst is present in the form of irregular particles as granulate and after activation has particle sizes of 1 to 8 mm.
摘要:
This invention comprises a process and a system thereof comprising apparatuses for developing multi-component vapor mixture by heating of solution of reactants comprising one or more of diphenols, or diphenol derivatives, and an organic compound, wherein the organic compound is one which upon reacting in a vapor state in presence of a catalyst with diphenols, or diphenol derivatives, produces a monoalkyl ether of a dihydric phenolic compound; and wherein the entire solution of reactants completely transforms into a super-heated multi-component vapor using heaters without the use of thin film evaporator. The complete transformation of the entire solution of said reactants in to super-heated multicomponent vapor is achieved by heating the entire solution firstly by a pre-heater followed by further heating by a super-heater, further comprising removal of the unevaporated or condensed high boilers and tar to drain, and subjecting the superheated vapor to vapor phase reaction mediated by catalyst to get monoalkyl ether of a dihydric phenolic compound.
摘要:
A catalyst containing a pentasil-type alumosilicates and a binder, in the form of spheres having an average diameter between 0.3 and 7 mm, wherein the BET surface area of the catalyst ranges from 300 to 600 m2/g. Also disclosed is a method for producing the catalyst, wherein primary crystallites of the aluminosilicate having an average diameter of at least 0.01 μm and less than 0.1 μm are mixed with the binder, shaped into spheres having an average diameter between 0.3 and 7 mm, and subsequently calcined. Also disclosed is the use of the catalyst for converting methanol into olefins, in particular propylene. Also disclosed is a method for producing olefins from methanol, in which a feed gas is fed across the catalyst.
摘要:
The present invention relates to a novel process for preparing a phosphorus-containing catalyst, in which a steam treatment of the catalyst is effected, and to the catalyst obtainable thereby, and to the use thereof in a process for preparing olefins from oxygenates. The steam treatment of the catalyst typically precedes modification of the catalyst with a phosphorus compound.
摘要:
A catalyst support for purification of exhaust gas includes a porous composite metal oxide, the porous composite metal oxide containing alumina, ceria, and zirconia and having an alumina content ratio of from 5 to 80% by mass, wherein after calcination in the air at 1100° C. for 5 hours, the porous composite metal oxide satisfies a condition such that standard deviations of content ratios (as at % unit) of aluminum, cerium and zirconium elements are each 19 or less with respect to 100 minute areas (with one minute area being 300 nm in length×330 nm in width) of the porous composite metal oxide, the standard deviation being determined by energy dispersive X-ray spectroscopy using a scanning transmission electron microscope equipped with a spherical aberration corrector.
摘要:
Embodiments of an invention disclosed herein relate to particles made from zeolite catalysts and their use in oligomerization processes. In particular, shaped particles (for example, spheroid particles) are made from compositions including the contact product of at least one zeolite catalyst and at least one binder.
摘要:
Provided is a CO shift catalyst that reforms carbon monoxide (CO) in a gas. The CO shift catalyst includes an active component containing either molybdenum (Mo) or iron (Fe) as a main component, and either nickel (Ni) or ruthenium (Ru) as an accessory component, and a carrier which carries the active component and consists of one or two or more kinds of oxides of titanium (Ti), zirconium (Zr), and cerium (Ce). A temperature during catalyst manufacturing firing is set to 600° C. or higher, and an average pore size of the carrier is set to 300 Å or more.