Abstract:
The present invention relates to a process for the preparation of a zeolitic material comprising the steps of: (1) providing a mixture comprising one or more sources for YO2 and one or more alkenyltrialkylammonium cation R1R2R3R4N+-containing compounds as structure directing agent; and (2) crystallizing the mixture obtained in step (1) to obtain a zeolitic material; wherein Y is a tetravalent element, and wherein R1, R2, and R3 independently from one another stand for alkyl; and R4 stands for alkenyl, as well as to zeolitic materials which may be obtained according to the inventive process and to their use.
Abstract translation:本发明涉及一种制备沸石材料的方法,包括以下步骤:(1)提供包含一种或多种YO 2源和一种或多种烯基三烷基铵阳离子R 1 R 2 R 3 R 4 N +化合物作为结构导向剂的混合物; 和(2)使步骤(1)中获得的混合物结晶以获得沸石材料; 其中Y是四价元素,并且其中R 1,R 2和R 3彼此独立地代表烷基; 并且R4代表烯基,以及可以根据本发明方法获得的沸石材料及其用途。
Abstract:
A process for preparing a zeolitic material comprising Ti, having framework type CHA and having a framework structure which comprises Si and O, said process comprising (i) preparing a pre-synthesis mixture comprising water, a CHA framework structure directing agent, and a zeolitic material comprising Ti, having framework type MFI and having a framework structure which comprises Si and O; (ii) removing water from the pre-synthesis mixture obtained from (i) by heating the pre-synthesis mixture to a temperature of less than 100° C. at a pressure of less than 1 bar (abs); (iii) hydrothermally crystallizing the zeolitic material comprising Ti, having framework type CHA and having a framework structure which comprises Si and O.
Abstract:
A zeolitic material having framework type CHA, comprising a transition metal M and an alkali metal A, and having a framework structure comprising a tetravalent element Y, a trivalent element X and 0, wherein the transition metal M is a transition metal of groups 7 to 12 of the periodic table, A is one or more of K and Cs, Y is one or more of Si, Ge, Ti, Sn and Zr, and X is one or more of Al, B, Ga and In. A process for preparing such a zeolitic material. Use of such a zeolitic material.
Abstract:
A process for preparing a zeolitic material containing YO2 and X2O3, where Y and X represent a tetravalent element and a trivalent element, respectively, is described. The process includes (1) a step of preparing a mixture containing one or more structure directing agents, seed crystals, and a first zeolitic material containing YO2 and X2O3 and having FAU-, GIS-, MOR-, and/or LTA-type framework structures; and (2) a step of heating the mixture for obtaining a second zeolitic material containing YO2 and X2O3 and having a different framework structure than the first zeolitic material. The mixture prepared in (1) and heated in (2) contains 1000 wt % or less of H2O based on 100 wt % of YO2 in the framework structure of the first zeolitic material. A zeolitic material obtainable and/or obtained by the process and its use are also described.
Abstract:
The present invention relates to a process for the production of a transition metal containing zeolite comprising expanding a layered silicate with a swelling agent and introducing the transition metal into the interlayer expanded silicate prior to calcination thereof for obtaining the transition metal containing zeolite. The present invention further relates to a zeolite containing transition metal nanoparticles as obtainable or obtained according to the inventive process, as well as to a zeolite containing nanoparticles per se. Finally the present invention relates to the use of a zeolite containing transition metal nanoparticles as obtainable or obtained according to the inventive process, as well as to the use of a zeolite containing nanoparticles per se.
Abstract:
The present invention relates to a process for the production of a zeolitic material having a BEA-type framework structure comprising YO2 and X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising one or more sources for YO2 and one or more sources for X2O3; (2) crystallizing the mixture obtained in step (1); (3) subjecting the zeolitic material having a BEA-type framework structure obtained in step (2) to an ion-exchange procedure with Cu; and (4) subjecting the Cu ion-exchanged zeolitic material obtained in step (3) to an ion-exchange procedure with Fe; wherein Y is a tetravalent element, and X is a trivalent element, wherein the mixture provided in step (1) and crystallized in step (2) further comprises seed crystals comprising one or more zeolitic materials having a BEA-type framework structure, and wherein the mixture provided in step (1) and crystallized in step (2) does not contain an organotemplate as a structure-directing agent, as well as to the zeolitic material having a BEA frame work structure per se, and to its use, in particular in a method for the treatment of NOx by selective catalytic reduction (SCR).
Abstract:
Process for producing a passivated catalyst comprising a zeolite and at least one active metal, wherein the catalyst is held in a fluidized bed and is passivated in the fluidized bed by means of a silicon compound.
Abstract:
Disclosed are methods, apparatuses, and systems for producing at least one chemical product associated with one or more environmental attribute(s) and for assigning at least one environmental attribute to at least one chemical product produced by a chemical production network.
Abstract:
The present invention relates to a process for purifying a pyrolysis oil comprising providing a stream S0 comprising a pyrolysis oil, the pyrolysis oil comprising one or more halogenated organic compounds and one or more organic compounds comprising conjugated double bonds; subjecting the stream S0 to hydrogenation in at least one reaction zone Z1 containing a heterogeneous hydrogenation catalyst, obtaining a stream S1 being depleted, compared to S0, in the one or more organic compounds comprising conjugated double bonds; subjecting the stream S1 to dehalogenation in at least one dehalogenation zone Z2 down-stream of Z1, obtaining a stream S2 being depleted, compared to S1, in the one or more halogenated organic compounds.
Abstract:
The present invention relates to a catalyst for the conversion of oxygenates to olefins, wherein the catalyst comprises one or more zeolites of the MFI, MEL and/or MWW structure type and particles of one or more metal oxides, the one or more zeolites of the MFI, MEL and/or MWW structure type comprising one or more alkaline earth metals selected from the group consisting of Mg, Ca, Sr, Ba and combinations of two or more thereof, wherein the catalyst displays a water uptake of 9.0 wt.-% or less, as well as to a process for the production thereof and to its use, in particular in a process for converting oxygenates to olefins.