Abstract:
The invention relates to a catalyst system suitable for hydrogenating aromatic nitro compounds (I) to form the corresponding aromatic amines (II), the catalyst system containing, as essential constituents: a component A selected from the group consisting of silicon carbide, corundum (alpha-Al2O3) and slightly porous to non-porous zirconium oxide (ZrO2); and a component B, containing B1—a carrier substance selected from the group consisting of silicon dioxide, gamma-, delta- or theta-aluminum oxide Al2O3, titanium dioxide, zirconium dioxide and graphite, B2—a metal or a plurality of metals selected from the group consisting of copper, nickel, palladium, platinum and cobalt, and optionally B3—an additional metal selected from the group consisting of at least one metal selected from main group I, main group II, main group IV and sub-groups II, V, VI and VIII of the periodic table of the elements, the proportion of component A being in the range of 5 to 60 wt %, in relation to the total weight of the catalyst system, and the aromatic nitro compounds (I) being those of the general formula R—(NO2)n, (I), and the aromatic amines (II) being those of the general formula R—(NH2)n, (II), and the moieties R and indices n in formulas (I) and (II) having the following meaning: R is a substituted or unsubstituted aromatic C6-C10 moiety and n is an integer from 1 to 5.
Abstract:
The present invention relates to a process for the conversion of 2-aminoethanol to ethane-1,2-diamine and/or linear polyethylenimines of the formula H2N—[CH2CH2NH]n—CH2CH2NH2 wherein n≥1 comprising: (i) providing a catalyst comprising a zeolitic material having the MOR framework structure comprising YO2 and X2O3, wherein Y is a tetravalent element and X is a trivalent element, said zeolitic material containing copper as extra-framework ions; (ii) providing a gas stream comprising 2-aminoethanol and ammonia; (iii) contacting the catalyst provided in (i) with the gas stream provided in (ii) for converting 2-aminoethanol to ethane-1,2-diamine and/or linear polyethylenimines.
Abstract:
The present invention relates to a process for producing a supported tin-comprising catalyst, wherein a solution (S) comprising tin nitrate and at least one complexing agent is applied to the support, where the solution (S) does not comprise any solid or has a solids content of not more than 0.5% by weight based on the total amount of dissolved components.
Abstract:
A method for removing methoxyethanol from a mixture comprising methoxyethanol and morpholine makes use of the selective adsorption of methoxyethanol onto a mixed oxide comprising a spinel phase. The mixed oxide comprises 20 to 30% by weight MgO and 80 to 70% by weight Al2O3. The spinel phase has the formula MgAl2O4. The mixture is a pre-purified reaction output of the reaction of diethylene glycol with ammonia in the presence of an amination catalyst.
Abstract:
The present invention relates to a process for the conversion of ethane-1,2-diol to ethane-1,2-diamine and/or linear polyethylenimines of the formula H2N—[CH2CH2NH]n—CH2CH2NH2 wherein n≥1 comprising (i) providing a catalyst comprising a zeolitic material comprising YO2 and X2O3, wherein Y is a tetravalent element and X is a trivalent element, wherein the zeolitic material is selected from the group consisting of zeolitic materials having the MOR, FAU, CHA and/or GME framework structure, including combinations of two or more thereof; (ii) providing a gas stream comprising ethane-1,2-diol and ammonia; (iii) contacting the catalyst provided in (i) with the gas stream provided in (ii) for converting ethane-1,2-diol to ethane-1,2-diamine and/or linear polyethylenimines.
Abstract:
A process for the regeneration of a supported noble metal catalyst comprising contacting the catalyst with a liquid aqueous system at a temperature in the range of from 90 to 160° C., wherein the pH of the aqueous system is outside the range of from 6 to 8, separating the aqueous system from catalyst; and subjecting the catalyst to calcination.
Abstract:
A process to produce propanol and iso-propanol (bio-propanol), a biocomponent for gasoline relates to the conversion of bio-glycerin to bio-propanol and bio-iso-propanol. In particular, a process is related for the conversion of glycerin, in particular glycerin from renewable sources, to propanols, the process including the following steps:
(a) hydrogenating a glycerin phase with a Co—Cu—Mn—Mo based hydrogenation catalyst to give an effluent containing water and an organic mixture of more than 40 wt % of a mixture of ethanol, 1-propanol and 2-propanol and the rest being unreacted propanediols and glycerin, with traces of ethylene glycol; (b) separating by mainly distillation the ethanol, 1-propanol and 2-propanol mixture from the other components in the effluent of step a); and (c) optionally, recycling all or part of the unreacted propandiols and glycerin deriving from steps a) and/or b) to the hydrogenation step a).
Abstract:
The present invention relates to a process for preparing alkanolamines and ethyleneamines in the liquid phase, by reacting ethylene glycol and/or monoethanolamine with ammonia in the presence of an amination catalyst which is obtained by reducing a catalyst precursor, wherein the preparation of the catalyst precursor comprises a step a) in which a catalyst precursor comprising one or more catalytically active components of Sn, Cu and Ni, and a step b) in which the catalyst precursor prepared in step a) is contacted with a soluble Re compound.
Abstract:
The present invention relates to a process for continuous hydrogenation of a nitro compound to the corresponding amine in a liquid reaction mixture comprising the nitro compound in a reaction chamber in the presence of a supported catalyst which comprises as the active component at least one element from groups 7 to 12 of the periodic table of the elements, wherein ammonia is added to the reaction chamber during the hydrogenation.
Abstract:
Process for hydrogenating toluenediamine (TDA) tar containing TDA and high boilers relative to TDA, including the step of contacting the toluenediamine tar with a heterogeneous hydrogenation catalyst comprising at least one metal selected from the group consisting of Ni, Co, Ru, Pd, Pt on at least one catalyst support selected from the group consisting of carbon, TiO2 and ZrO2, and with hydrogen under hydrogenating conditions.