CERAMIC SHOWERHEADS WITH CONDUCTIVE ELECTRODES

    公开(公告)号:US20210189564A1

    公开(公告)日:2021-06-24

    申请号:US17176411

    申请日:2021-02-16

    Abstract: Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.

    Ceramic showerheads with conductive electrodes

    公开(公告)号:US11591693B2

    公开(公告)日:2023-02-28

    申请号:US17176411

    申请日:2021-02-16

    Abstract: Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.

    SYSTEMS AND METHODS FOR IMPROVED PERFORMANCE IN SEMICONDUCTOR PROCESSING

    公开(公告)号:US20200091018A1

    公开(公告)日:2020-03-19

    申请号:US16131942

    申请日:2018-09-14

    Abstract: Exemplary etching methods may include flowing a hydrogen-containing precursor into a semiconductor processing chamber. The methods may include flowing a fluorine-containing precursor into a remote plasma region of the semiconductor processing chamber. The methods may include forming a plasma of the fluorine-containing precursor in the remote plasma region. The methods may include etching a pre-determined amount of a silicon-containing material from a substrate in a processing region of the semiconductor processing chamber. The methods may include measuring a radical density within the remote plasma region during the etching. The methods may also include halting the flow of the hydrogen-containing precursor into the semiconductor processing chamber when the radical density measured over time correlates to a produced amount of etchant to remove the pre-determined amount of the silicon-containing material.

    Ceramic showerheads with conductive electrodes

    公开(公告)号:US10920319B2

    公开(公告)日:2021-02-16

    申请号:US16245698

    申请日:2019-01-11

    Abstract: Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.

    MULTIPLE CHANNEL SHOWERHEADS
    9.
    发明申请

    公开(公告)号:US20200087788A1

    公开(公告)日:2020-03-19

    申请号:US16132796

    申请日:2018-09-17

    Abstract: Exemplary semiconductor showerheads may include a first plate characterized by a first surface in which a plurality of first apertures are defined, and further characterized by a second surface opposite the first surface and from which extends a plurality of annular members. Each annular member of the plurality of annular members may extend from a separate first aperture of the plurality of first apertures. A channel may be defined by each first aperture and corresponding annular member. The showerheads may also include a second plate coupled with the first plate and characterized by a first surface facing the first plate and a second surface opposite the first surface. A plurality of second apertures may be defined through the second plate within an internal area of the second plate. Each annular member of the plurality of annular members may extend within a separate second aperture of the plurality of second apertures.

    MULTI-LAYER PLASMA EROSION PROTECTION FOR CHAMBER COMPONENTS

    公开(公告)号:US20180330923A1

    公开(公告)日:2018-11-15

    申请号:US15965794

    申请日:2018-04-27

    Abstract: A method of applying a multi-layer plasma resistant coating on an article comprises performing plating or ALD to form a conformal first plasma resistant layer on an article, wherein the conformal first plasma resistant layer is formed on a surface of the article and on walls of high aspect ratio features in the article. The conformal first plasma resistant coating has a porosity of approximately 0% and a thickness of approximately 200 nm to approximately 1 micron. One of electron beam ion assisted deposition (EB-IAD), plasma enhanced chemical vapor deposition (PECVD), aerosol deposition or plasma spraying is then performed to form a second plasma resistant layer that covers the conformal first plasma resistant layer at a region of the surface but not at the walls of the high aspect ratio features.

Patent Agency Ranking