Abstract:
Apparatus for processing a substrate are provided herein. In some embodiments, a lid for a substrate processing chamber includes: a lid plate comprising an upper surface and a contoured bottom surface, the upper surface having a central opening and the contoured bottom surface having a first portion that extends downwardly and outwardly from the central opening to a peripheral portion of the lid plate and a second portion that extends radially outward along the peripheral portion of the lid plate; an upper flange extending radially outward from the lid plate; and one or more channels formed through the lid plate from the upper surface of the lid plate to the second portion of the contoured bottom surface.
Abstract:
Thermal monitors comprising a substrate with at least one camera position on a bottom surface thereof, a wireless communication controller and a battery. The camera has a field of view sufficient to produce an image of at least a portion of a wafer support, the image representative of the temperature within the field of view. Methods of using the thermal monitors are also described.
Abstract:
Thermal monitors comprising a substrate with at least one camera position on a bottom surface thereof, a wireless communication controller and a battery. The camera has a field of view sufficient to produce an image of at least a portion of a wafer support, the image representative of the temperature within the field of view. Methods of using the thermal monitors are also described.
Abstract:
Embodiments of a process kit for use in a multi-cathode process chamber are disclosed herein. In some embodiments, a process kit includes a rotatable shield having a base, a conical portion extend downward and radially outward from the base, and a collar portion extending radially outward from a bottom of the conical portion; an inner deposition ring having a leg portion, a flat portion extending radially inward from the leg portion, a first recessed portion extending radially inward from the flat portion, and a first lip extending upward from an innermost section of the first recessed portion; and an outer deposition ring having a collar portion, an upper flat portion disposed above and extending radially inward from the collar portion, a second recessed portion extending inward from the upper flat portion, and a second lip extending upward from an innermost section of the second recessed portion.
Abstract:
Embodiments described herein provide a remote plasma system utilizing a microwave source. Additionally, generation and deposition techniques for 2D transition metal chalcogenides with large area uniformity utilizing microwave assisted generation of radicals is disclosed. Plasma may be generated remotely utilizing the microwave source. A processing platform configured to deposit 2D transition metal chalcogenides is also disclosed.
Abstract:
A deposition system, and a method of operation thereof, includes: a cathode; a shroud below the cathode; a rotating shield below the cathode for exposing the cathode through the shroud and through a shield hole of the rotating shield; and a rotating pedestal for producing a material to form a carrier over the rotating pedestal, wherein the material having a non-uniformity constraint of less than 1% of a thickness of the material and the cathode having an angle between the cathode and the carrier.
Abstract:
A deposition system, and a method of operation thereof, includes: a cathode; a shroud below the cathode; a rotating shield below the cathode for exposing the cathode through the shroud and through a shield hole of the rotating shield; and a rotating pedestal for producing a material to form a carrier over the rotating pedestal, wherein the material having a non-uniformity constraint of less than 1% of a thickness of the material and the cathode having an angle between the cathode and the carrier.
Abstract:
Methods and apparatus for processing a substrate are provided herein. In some embodiments, a substrate processing chamber includes: a chamber body; a chamber lid assembly having a housing enclosing a central channel that extends along a central axis and has an upper portion and a lower portion; a lid plate coupled to the housing and having a contoured bottom surface that extends downwardly and outwardly from a central opening coupled to the lower portion of the central channel to a peripheral portion of the lid plate; and a gas distribution plate disposed below the lid plate and having a plurality of apertures disposed through the gas distribution plate.
Abstract:
A deposition system, and a method of operation thereof, includes: a cathode; a shroud below the cathode; a rotating shield below the cathode for exposing the cathode through the shroud and through a shield hole of the rotating shield; and a rotating pedestal for producing a material to form a carrier over the rotating pedestal, wherein the material having a non-uniformity constraint of less than 1% of a thickness of the material and the cathode having an angle between the cathode and the carrier.
Abstract:
Thermal monitors comprising a substrate with at least one camera position on a bottom surface thereof, a wireless communication controller and a battery. The camera has a field of view sufficient to produce an image of at least a portion of a wafer support, the image representative of the temperature within the field of view. Methods of using the thermal monitors are also described.