Abstract:
Systems and methods are provided for stacked semiconductor memory packages. Each package can include an integrated circuit (“IC”) package substrate capable of transmitting data to memory dies stacked within the package over two channels. Each channel can be located on one side of the IC package substrate, and signals from each channel can be routed to the memory dies from their respective sides.
Abstract:
Methods and apparatus for equalization of a high speed serial bus. A well-tuned passive equalization circuit for use with high frequency differential signals suffer from e.g., impedance mismatches, impedance discontinuities (e.g., connectors, etc.). In one embodiment, a shunting circuit is inserted between the differential terminals of a Universal Serial Bus (USB) cable, connector, etc. The shunting circuit is configured to “open” at low frequencies to enable Full Speed (FS) enumeration, while also providing sufficiently high impedance at high frequencies to enable High Speed (HS) operation. In one such implementation, the shunting circuit includes a tuned resistor, capacitor, inductor, and switch element arranged in series.
Abstract:
Systems and methods are provided for stacked semiconductor memory packages. Each package can include an integrated circuit (“IC”) package substrate capable of transmitting data to memory dies stacked within the package over two channels. Each channel can be located on one side of the IC package substrate, and signals from each channel can be routed to the memory dies from their respective sides.
Abstract:
Systems and methods are provided for stacked semiconductor memory packages. Each package can include an integrated circuit (“IC”) package substrate capable of transmitting data to memory dies stacked within the package over two channels. Each channel can be located on one side of the IC package substrate, and signals from each channel can be routed to the memory dies from their respective sides.
Abstract:
Systems and methods are provided for stacked semiconductor memory packages. Each package can include an integrated circuit (“IC”) package substrate capable of transmitting data to memory dies stacked within the package over two channels. Each channel can be located on one side of the IC package substrate, and signals from each channel can be routed to the memory dies from their respective sides.
Abstract:
A capacitive fingerprint sensor that may be formed of an array of sensing elements. Each capacitive sensing element of the array may register a voltage that varies with the capacitance of a capacitive coupling. A finger may capacitively couple to the individual capacitive sensing elements of the sensor, such that the sensor may sense a capacitance between each capacitive sensing element and the flesh of the fingerprint. The capacitance signal may be detected by sensing the change in voltage on the capacitive sensing element as the relative voltage between the finger and the sensing chip is changed. Alternately, the capacitance signal may be detected by sensing the change in charge received by the capacitive sensing elements as the relative voltage between the finger and the sensing chip is changed.
Abstract:
A capacitive fingerprint sensor that may be formed of an array of sensing elements. Each capacitive sensing element of the array may register a voltage that varies with the capacitance of a capacitive coupling. A finger may capacitively couple to the individual capacitive sensing elements of the sensor, such that the sensor may sense a capacitance between each capacitive sensing element and the flesh of the fingerprint. The capacitance signal may be detected by sensing the change in voltage on the capacitive sensing element as the relative voltage between the finger and the sensing chip is changed. Alternately, the capacitance signal may be detected by sensing the change in charge received by the capacitive sensing elements as the relative voltage between the finger and the sensing chip is changed.
Abstract:
A capacitive fingerprint sensor that may be formed of an array of sensing elements. Each capacitive sensing element of the array may register a voltage that varies with the capacitance of a capacitive coupling. A finger may capacitively couple to the individual capacitive sensing elements of the sensor, such that the sensor may sense a capacitance between each capacitive sensing element and the flesh of the fingerprint. The capacitance signal may be detected by sensing the change in voltage on the capacitive sensing element as the relative voltage between the finger and the sensing chip is changed. Alternately, the capacitance signal may be detected by sensing the change in charge received by the capacitive sensing elements as the relative voltage between the finger and the sensing chip is changed.
Abstract:
Systems and methods are provided for stacked semiconductor memory packages. Each package can include an integrated circuit (“IC”) package substrate capable of transmitting data to memory dies stacked within the package over two channels. Each channel can be located on one side of the IC package substrate, and signals from each channel can be routed to the memory dies from their respective sides.
Abstract:
Systems and methods are provided for stacked semiconductor memory packages. Each package can include an integrated circuit (“IC”) package substrate capable of transmitting data to memory dies stacked within the package over two channels. Each channel can be located on one side of the IC package substrate, and signals from each channel can be routed to the memory dies from their respective sides.