摘要:
An LED-based photolithographic illuminator with high collection efficiency is disclosed. The illuminator utilizes an array of LEDs, wherein each LED has an LED die and a heat sink. The LED dies are imaged onto the input end of a homogenizer rod to substantially cover the input end without inclusion of the non-light-emitting heat sink sections of the LED. A microlens array is used to image the LED dies. The collection efficiency of the illuminator is better than 50% and the illumination uniformity at the output end of the light homogenizer is within +/−2%.
摘要:
A programmable illuminator for a photolithography system includes a light source, a first optical system having a light uniformizing element, a programmable micro-mirror device, and a second optical system that forms an illumination field that illuminates a reticle. The programmable micro-mirror device can be configured to perform shutter and edge-exposure-blocking functions that have previously required relatively large mechanical devices. Methods of improving illumination field uniformity using the programmable illuminator are also disclosed.
摘要:
Systems for and methods of laser-enhanced plasma processing of semiconductor materials are disclosed. The method includes supporting a semiconductor material in a processing chamber interior and subjecting the semiconductor material to a plasma process. The method also includes simultaneously heating the wafer surface with a laser beam through a window in the processing chamber to increase the reaction rate of the plasma process. Other methods include performing laser heating of the semiconductor material before or after the plasma process but while the semiconductor material resides in the same chamber interior.
摘要:
Methods of annealing a thin semiconductor wafer are disclosed. The methods allow for high-temperature annealing of one side of a thin semiconductor wafer without damaging or overheating heat-sensitive electronic device features that are either on the other side of the wafer or embedded within the wafer. The annealing is performed at a temperature below the melting point of the wafer so that no significant dopant redistribution occurs during the annealing process. The methods can be applied to activating dopants or to forming ohmic contacts.
摘要:
Apparatuses and methods are provided for processing a surface of a substrate. The substrate may have a surface pattern that exhibits directionally and/or orientationally different reflectivities relative to radiation of a selected wavelength and polarization. The apparatus may include a radiation source that emits a photonic beam of the selected wavelength and polarization directed toward the surface at orientation angle and incidence angle selected to substantially minimize substrate surface reflectivity variations and/or minimize the maximum substrate surface reflectivity during scanning. Also provided are methods and apparatuses for selecting an optimal orientation and/or incidence angle for processing a surface of a substrate.
摘要:
Each sensor of a linear array of sensors includes, in part, a sensing electrode and an associated feedback circuit. The sensing electrodes are adapted to be brought in proximity to a flat panel having formed thereon a multitude of pixel electrodes in order to capacitively measure the voltage of the pixel electrodes. Each feedback circuit is adapted to actively drive its associated electrode via a feedback signal so as to maintain the voltage of its associated electrode at a substantially fixed bias. Each feedback circuit may include an amplifier having a first input terminal coupled to the sensing electrode and a second input terminal coupled to receive a biasing voltage. The output signal of the amplification circuit is used to generate the feedback signal that actively drives the sensing electrode. The biasing voltage may be the ground potential.
摘要:
Radiant energy line source(s) (e.g., laser diode array) and anamorphic relay receiving radiant energy therefrom and directing that energy to a substrate in a relatively uniform line image. The line image is scanned with respect to the substrate for treatment thereof. Good uniformity is provided even when the line source is uneven. Optionally, delimiting aperture(s) located in the anamorphic relay focal plane and a subsequent imaging relay are includeable to permit substrate exposure in strips with boundaries between adjacent strips within scribe lines between circuits. An anamorphic relay focal plane mask with a predetermined pattern can be used to define portions of the substrate to be treated with the substrate and mask scanning motions synchronized with each other. Control of source output, and position/speed of the substrate, with respect to the line image, allows uniform dose and required magnitude over the substrate.
摘要:
A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.
摘要:
A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.
摘要:
The disclosure is directed to laser annealing of GaN light-emitting diodes (LEDs) with reduced pattern effects. A method includes forming elongate conductive structures atop either an n-GaN layer or a p-GaN layer of a GaN LED structure, the elongate conductive structures having long and short dimensions, and being spaced apart and substantially aligned in the long dimensions. The method also includes generating a P-polarized anneal laser beam that has an anneal wavelength that is greater than the short dimension. The method also includes irradiating either the n-GaN layer or the p-GaN layer of the GaN LED structure through the conductive structures with the P-polarized anneal laser beam, including directing the anneal laser beam relative to the conductive structures so that the polarization direction is perpendicular to the long dimension of the conductive structures.