Abstract:
A method of improving the surface of an object treats the surface with a neutral beam formed from a gas cluster ion mean to create a surface texture and/or increase surface area.
Abstract:
An apparatus, method and products thereof provide an accelerated neutral beam derived from an accelerated gas cluster ion beam for processing materials.
Abstract:
A method and apparatus is disclosed that provided for the successful and precise smoothing of conductive films on insulating films or substrates. The smoothing technique provides a smooth surface that is substantially free of scratches. By supplying a source of electrons, harmful charging of the films and damage to the films are avoided.
Abstract:
This invention concerns a method for protecting surfaces of diamond, diamondlike carbon and of other forms of carbon, from the effects of oxidation which can occur at high temperatures in an oxidizing environment. The method involves exposing the surface of the diamond or other carbon material to energetic ions of, or containing, an element or elements which can be caused to react with the carbon to form a thin layer containing a carbide compound that is itself more oxidation resistant than the diamond or other carbon material and which is able to serve as a barrier to prevent or delay penetration of oxygen to the thereby protected diamond or other carbon material.
Abstract:
A pulsed electron beam generator produces a short duration pulse of electrons in the form of a directed beam for thermal processing of a semiconductor device, which is positioned in a pulsed electron beam chamber so that the propagating electron beam impacts upon the device surface in selected regions of the device that are to be processed. Energy deposited by the impacting electron pulse momentarily elevates the temperature of the selected regions above threshold processing temperatures for rapid, effective annealing, sintering or other thermal processing. The characteristics of the electron beam pulse are such that only those surface vicinity regions to be processed are elevated to a high temperature, the remaining mass of the semiconductor device not being subjected to unnecessary or undesirable high temperature exposure.
Abstract:
An apparatus, method and products thereof provide an accelerated neutral beam derived from an accelerated gas cluster ion beam for processing materials.
Abstract:
An apparatus and method for characterizing a particle beam provides receiving a particle beam in a central region of a reduced pressure enclosure; impacting the received beam against a beam strike that is thermally isolated from the enclosure; measuring a temperature change of the beam strike due to the impacting beam; measuring a pressure change in the enclosure due to receiving the beam; and processing the measured temperature change and the measured pressure change to determine beam characteristics.
Abstract:
A method and apparatus for electrostatic bonding of a layered structure having at least one glass stratum by heating the layered structure to a temperature above the annealing point of the glass stratum, by applying a predetermined pressure and voltage potential across the layered structure while the layered structure is maintained at an elevated temperature. Application of pressure across the heated layered structure permits electrostatic bonding of non-complemental surfaces to form a laminated structure.
Abstract:
A pulsed electron beam generator produces a short duration pulse of electrons in the form of a directed beam for thermal processing of a semiconductor device, which is positioned in a pulsed electron beam chamber so that the propagating electron beam impacts upon the device surface in selected regions of the device that are to be processed. Energy deposited by the impacting electron pulse momentarily elevates the temperature of the selected regions above threshold processing temperatures for rapid, effective annealing, sintering or other thermal processing. The characteristics of the electron beam pulse are such that only those surface vicinity regions to be processed are elevated to a high temperature, the remaining mass of the semiconductor device not being subjected to unnecessary or undesirable high temperature exposure.