摘要:
Asymmetric transistors may be formed by creating pocket implants on one source-drain terminal of a transistor and not the other. Asymmetric transistors may also be formed using dual-gate structures having first and second gate conductors of different work functions. Stacked transistors may be formed by stacking two transistors of the same channel type in series. One of the source-drain terminals of each of the two transistors is connected to a common node. The gates of the two transistors are also connected together. The two transistors may have different threshold voltages. The threshold voltage of the transistor that is located higher in the stacked transistor may be provided with a lower threshold voltage than the other transistor in the stacked transistor. Stacked transistors may be used to reduce leakage currents in circuits such as memory cells. Asymmetric transistors may also be used in memory cells to reduce leakage.
摘要:
Mixed gate varactors are provided. The mixed gate varactors may include a semiconductor region of a given doping type. A first terminal for the varactor may be formed from a gate structure on the semiconductor region. A second terminal for the varactor may be formed from a heavily doped region in the semiconductor region that has the same doping type as the given doping type. A third terminal for the varactor may be formed from a heavily doped region in the semiconductor region that has a different doping type than the given doping type. The gate structure may include multiple gate conductors on a gate insulator. The gate insulator may be a high-K dielectric. The gate conductors may be metals or other materials that have different work functions. A conductive layer such as a layer of polysilicon may electrically connect the first and second gate conductors.
摘要:
Metal-oxide-semiconductor transistors are provided. A metal-oxide-semiconductor transistor may be formed on a semiconductor substrate. Source and drain regions may be formed in the substrate. A gate insulator such as a high-K dielectric may be formed between the source and drain regions. A gate may be formed from multiple gate conductors. The gate conductors may be metals with different workfunctions. A first of the gate conductors may form a pair of edge gate conductors that are adjacent to dielectric spacers. An opening between the edge gate conductors may be filled with the second gate conductor to form a center gate conductor. A self-aligned gate formation process may be used in fabricating the metal-oxide-semiconductor transistor.
摘要:
Integrated circuits with stressed transistors are provided. Stressing transistors may increase transistor threshold voltage without the need to increase channel doping. Stressing transistors may reduce total leakage currents. It may be desirable to compressively stress N-channel metal-oxide-semiconductor (NMOS) transistors and tensilely stress P-channel metal-oxide-semiconductor (PMOS) transistors to reduce leakage currents. Techniques that can be used to alter the amount of stressed experienced by transistors may include forming a stress-inducing layer, forming a stress liner, forming diffusion active regions using silicon germanium, silicon carbon, or standard silicon, implementing transistors in single-finger instead of multi-finger configurations, and implanting particles. Any combination of these techniques may be used to provide appropriate amounts of stress to increase the performance or decrease the total leakage current of a transistor.
摘要:
An integrated circuit with memory elements is provided. The memory elements may have memory element transistors with body terminals. Body bias control circuitry may supply body bias voltages that strengthen or weaken memory element transistors to improve read and write margins. The body bias control circuitry may dynamically control body bias voltages so that time-varying body bias voltages are supplied to memory element transistors. Address transistors and latch transistors in the memory elements may be selectively strengthened and weakened. Process variations may be compensated by weakening fast transistors and strengthening slow transistors with body bias adjustments.
摘要:
Mixed gate metal-oxide-semiconductor transistors are provided. The transistors may have an asymmetric configuration that exhibits increased output resistance. Each transistor may be formed from a gate insulating layer formed on a semiconductor. The gate insulating layer may be a high-K material. Source and drain regions in the semiconductor may define a transistor gate length. The gate length may be larger than the minimum specified by semiconductor fabrication design rules. The transistor gate may be formed from first and second gate conductors with different work functions. The relative sizes of the first and gate conductors in a given transistor control the threshold voltage for the transistor. A computer-aided design tool may be used to receive a circuit design from a user. The tool may generate fabrication masks for the given design that include mixed gate transistors with threshold voltages optimized to meet circuit design criteria.
摘要:
Metal-oxide-semiconductor transistors are provided. A metal-oxide-semiconductor transistor may be formed on a semiconductor substrate. Source and drain regions may be formed in the substrate. A gate insulator such as a high-K dielectric may be formed between the source and drain regions. A gate may be formed from multiple gate conductors. The gate conductors may be metals with different workfunctions. A first of the gate conductors may form a pair of edge gate conductors that are adjacent to dielectric spacers. An opening between the edge gate conductors may be filled with the second gate conductor to form a center gate conductor. A self-aligned gate formation process may be used in fabricating the metal-oxide-semiconductor transistor.
摘要:
A method for improving analog circuits performance using a circuit design using forward bias and a modified mixed-signal process is presented. A circuit consisting plurality of NMOS and PMOS transistors is defined. The body terminal of the NMOS transistors are coupled to a first voltage source and the body terminal of the PMOS transistors are coupled a second voltage source. Transistors in the circuit are selectively biased by applying the first voltage source to the body terminal of each selected NMOS transistor and applying the second voltage source to the body terminal of each selected PMOS transistor. In one embodiment, the first voltage source and the second voltage source are modifiable to provide forward and reverse bias to the body terminal of the transistors.
摘要:
A method for improving analog circuits performance using a circuit design using forward bias and a modified mixed-signal process is presented. A circuit consisting plurality of NMOS and PMOS transistors is defined. The body terminal of the NMOS transistors are coupled to a first voltage source and the body terminal of the PMOS transistors are coupled a second voltage source. Transistors in the circuit are selectively biased by applying the first voltage source to the body terminal of each selected NMOS transistor and applying the second voltage source to the body terminal of each selected PMOS transistor. In one embodiment, the first voltage source and the second voltage source are modifiable to provide forward and reverse bias to the body terminal of the transistors.
摘要:
A varactor may have a first terminal connected to a gate. The gate may be formed from a p-type polysilicon gate conductor. The gate may also have a gate insulator formed from a layer of insulator such as silicon oxide. The gate insulator may be located between the gate conductor and a body region. Source and drain contact regions may be formed in a silicon body region. The body region and the source and drain may be doped with n-type dopant. The varactor may have a second terminal connected to the n-type source and drain. A control voltage may be used to adjust the level of capacitance produced by the varactor between the first and second terminals. A positive control voltage may produce a larger capacitance than a negative control voltage. Application of the negative control voltage may produce a depletion layer in the p+ polysilicon gate layer.