Abstract:
A method of forming a film stack with reduced defects is provided and includes positioning a substrate on a substrate support within a processing chamber and sequentially depositing polysilicon layers and silicon oxide layers to produce the film stack on the substrate. The method also includes supplying a current of greater than 5 ampere (A) to a plasma profile modulator while generating a deposition plasma within the processing chamber, exposing the substrate to the deposition plasma while depositing the polysilicon layers and the silicon oxide layers, and maintaining the processing chamber at a pressure of greater than 2 Torr to about 100 Torr while depositing the polysilicon layers and the silicon oxide layers.
Abstract:
Embodiments of the invention contemplate a shadow ring that provides increased or decreased and more uniform deposition on the edge of a wafer. By removing material from the top and/or bottom surfaces of the shadow ring, increased edge deposition and bevel coverage can be realized. In one embodiment, the material on the bottom surface is reduced by providing a recessed slot on the bottom surface. By increasing the amount of material of the shadow ring, the edge deposition and bevel coverage is reduced. Another approach to adjusting the deposition at the edge of the wafer includes increasing or decreasing the inner diameter of the shadow ring. The material forming the shadow ring may also be varied to change the amount of deposition at the edge of the wafer.
Abstract:
Embodiments of the disclosure relate to deposition of a conformal organic material over a feature formed in a photoresist or a hardmask, to decrease the critical dimensions and line edge roughness. In various embodiments, an ultra-conformal carbon-based material is deposited over features formed in a high-resolution photoresist. The conformal organic layer formed over the photoresist thus reduces both the critical dimensions and the line edge roughness of the features.
Abstract:
Embodiments of the invention relate to deposition of a conformal carbon-based material. In one embodiment, the method comprises depositing a sacrificial dielectric layer with a predetermined thickness over a substrate, forming patterned features on the substrate by removing portions of the sacrificial dielectric layer to expose an upper surface of the substrate, introducing a hydrocarbon source, a plasma-initiating gas, and a dilution gas into the processing chamber, wherein a volumetric flow rate of hydrocarbon source: plasma-initiating gas: dilution gas is in a ratio of 1:0.5:20, generating a plasma at a deposition temperature of about 300 C to about 500 C to deposit a conformal amorphous carbon layer on the patterned features and the exposed upper surface of the substrate, selectively removing the amorphous carbon layer from an upper surface of the patterned features and the upper surface of the substrate, and removing the patterned features.
Abstract:
Capacitor devices containing silicon boron nitride with high boron concentration are provided. In one or more examples, a capacitor device is provided and contains a stopper layer containing silicon boron nitride and disposed on a substrate, a dielectric layer disposed on the stopper layer, vias formed within the dielectric layer and the stopper layer, metal contacts disposed on bottoms of the vias, a nitride barrier layer containing a metal nitride material and disposed on walls of the vias and disposed on the metal contacts, and an oxide layer disposed within the vias on the nitride barrier layer, wherein the oxide layer contains one or more holes or voids formed therein. The silicon boron nitride contains about 18 atomic percent (at %) to about 50 at % of boron.
Abstract:
A method of depositing a coating and a layered structure is provided. A coating is deposited on a substrate to make a layered structure, such that an interface between the coating and the substrate is formed. The coating includes silicon, oxygen, and carbon, where the carbon doping in the coating increases between the interface and the top surface of the coating. The top surface of the coating is inherently hydrophobic and icephobic, and reduces the wetting of water or ice film on the layered structure, without requiring reapplication of the coating.
Abstract:
Aspects disclosed herein relate to methods of depositing pure silicon oxide on a substrate using Octamethylcyclotetrasiloxane (OMCTS) precursor. In one aspect, the method generally includes positioning a substrate in a processing chamber, introducing an oxygen-containing gas into the processing chamber, introducing OMCTS precursor into the processing chamber, and reacting the oxygen-containing gas and the OMCTS precursor to remove carbon and deposit pure silicon oxide on the substrate.
Abstract:
In one implementation, a method comprising depositing one or more silicon oxide/silicon nitride containing stacks on a substrate positioned in a processing chamber is provided. Depositing the one or more silicon oxide/silicon nitride containing stacks comprises (a) energizing a first process gas into a first plasma, (b) depositing a first film layer over the substrate from the first plasma, (c) energizing a second process gas into a second plasma, wherein the second process gas comprises a compound having at least one silicon-nitrogen bond and (d) depositing a second film layer on the first film layer from the second plasma. The method further comprises repeating (a), (b), (c), and (d) until a predetermined number of first film layers and second film layers have been deposited on the substrate. The first film layer is a silicon oxide layer and the second film layer is a silicon nitride layer.
Abstract:
Embodiments of the disclosure relate to deposition of a conformal carbon-based material. In one embodiment, the method comprises depositing a sacrificial dielectric layer over a substrate, forming patterned features on the substrate by removing portions of the sacrificial dielectric layer to expose an upper surface of the substrate, introducing a hydrocarbon source, a plasma-initiating gas, and a dilution gas into the processing chamber, generating a plasma in the processing chamber at a deposition temperature of about 80° C. to about 550° C. to deposit a conformal amorphous carbon layer on the patterned features and the exposed upper surface of the substrate, selectively removing the amorphous carbon layer from an upper surface of the patterned features and the upper surface of the substrate using an anisotropic etching process to provide the patterned features filled within sidewall spacers, and removing the patterned features formed from the sacrificial dielectric layer.
Abstract:
Embodiments of the disclosure generally provide a method of forming a reduced dimension pattern in a hardmask that is optically matched to an overlying photoresist layer. The method generally comprises of application of a dimension shrinking conformal carbon layer over the field region, sidewalls, and bottom portion of the patterned photoresist and the underlying hardmask at temperatures below the decomposition temperature of the photoresist. The methods and embodiments herein further involve removal of the conformal carbon layer from the bottom portion of the patterned photoresist and the hardmask by an etch process to expose the hardmask, etching the exposed hardmask substrate at the bottom portion, followed by the simultaneous removal of the conformal carbon layer, the photoresist, and other carbonaceous components. A hardmask with reduced dimension features for further pattern transfer is thus yielded.