Abstract:
A memory system includes a memory circuit including a plurality of pages, including a particular page having a page activation time. The memory system also includes a memory controller circuit configured to receive a memory access request corresponding to data of the particular page. The memory controller circuit is also configured to transmit, in response to a determination that the particular page is inactive, an activation command to the memory circuit to activate the particular page, and to schedule a future transmission of an initial memory command for the particular page based on the page activation time.
Abstract:
A memory controller circuit coupled to a memory circuit that includes multiple banks may receive multiple access requests including a particular access request to a particular bank of the plurality of banks. The particular access request is associated with a particular virtual channel of a plurality of virtual channels. The memory controller circuit may select a given access requests of the multiple access requests based on an arbitration category value associated with a virtual channel of the given access request and modify the arbitration category value in response to selecting the given access request.
Abstract:
Techniques are disclosed relating to power management within an integrated circuits. In one embodiment an apparatus is disclosed that includes a circuit and a power management unit. The power management unit is configured to provide, based on a programmable setting, an indication of whether an attempted communication to the circuit is permitted to cause the circuit to exit from a power-managed state. In some embodiments, the apparatus includes a fabric configured to transmit the attempted communication to the circuit from a device. In such an embodiment, the circuit is configured to exit the power-managed state in response to receiving the attempted communication. The fabric is configured to determine whether to transmit the attempted communication based on the indication provided by the power management unit.
Abstract:
A method and apparatus for synchronizing data transfers from a first clock domain to a second clock domain includes sampling data from circuit included in the first clock domain. The clock signal from the first clock domain may then be synchronized to a clock signal from the second clock domain. The sampled data may then be captured using the clock signal from the second clock domain responsive to a detection of an edge of the synchronized first clock signal.
Abstract:
An apparatus for synchronizing a signal from a first clock domain into a second clock domain is disclosed. The apparatus may include circuitry, a synchronization circuit, and a clock gate circuit. The circuitry may de-assert a first enable signal dependent upon a first clock signal. The synchronization circuit may generate a second enable signal synchronized to a second clock signal and may de-assert the second enable signal in response to de-asserting the first enable signal. The clock gate circuit may generate a third clock signal dependent upon the second clock signal, and may disable the third clock signal responsive to de-asserting the second enable signal. The circuitry may further disable the second clock signal in response to determining a predetermined period of time has elapsed since de-asserting the first enable signal.
Abstract:
A method and apparatus for interfacing dynamic hardware power managed blocks and software power managed blocks is disclosed. In one embodiment, and integrated circuit (IC) may include a number of power manageable functional units. The functional units maybe power managed through hardware, software, or both. Each of the functional units may be coupled to at least one other functional unit through a direct communications link. A link state machine may monitor each of the communications links between functional units, and may broadcast indications of link availability to the functional units coupled to the link. Responsive to a software request to shut down a given link, or a hardware initiated shutdown of one of the functional units coupled to the link, the link state machine may broadcast and indication that the link is unavailable.
Abstract:
In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
Abstract:
An apparatus for synchronizing a signal from a first clock domain into a second clock domain is disclosed. The apparatus may include circuitry, a synchronization circuit, and a clock gate circuit. The circuitry may de-assert a first enable signal dependent upon a first clock signal. The synchronization circuit may generate a second enable signal synchronized to a second clock signal and may de-assert the second enable signal in response to de-asserting the first enable signal. The clock gate circuit may generate a third clock signal dependent upon the second clock signal, and may disable the third clock signal responsive to de-asserting the second enable signal. The circuitry may further disable the second clock signal in response to determining a predetermined period of time has elapsed since de-asserting the first enable signal.
Abstract:
Systems, apparatuses, and methods for addressing bank hotspotting are described. A computing system includes a memory controller with an arbiter for determining how to arbitrate access to one or more memory device(s) for received requests. The arbiter categorizes each request in a manner that helps to ensure fair virtual channel distribution across the banks of the memory device(s). The category system includes bank hotspotting functions to give banks that have more requests more chances to go over banks with fewer requests. The category system is implemented proportionally with more category credits given to banks with higher bank depths within the virtual channel.
Abstract:
Systems, apparatuses, and methods for addressing bank hotspotting are described. A computing system includes a memory controller with an arbiter for determining how to arbitrate access to one or more memory device(s) for received requests. The arbiter categorizes each request in a manner that helps to ensure fair virtual channel distribution across the banks of the memory device(s). The category system includes bank hotspotting functions to give banks that have more requests more chances to go over banks with fewer requests. The category system is implemented proportionally with more category credits given to banks with higher bank depths within the virtual channel.