Abstract:
A device is provided in a supercritical fluid system, which uses a mobile phase output by a separation device, the mobile phase volumetrically expanding as it decompresses. The device includes a passive splitter and a shuttle valve. The passive splitter is configured to receive the mobile phase and to split the mobile phase into a primary flow stream and a split flow stream, where the primary flow stream is directed to a pressure maintenance device. The passive splitter is further configured to reduce pressure of the split flow stream, causing volumetric expansion of the split flow stream. The shuttle valve is configured to insert volumetric aliquots of the volumetrically expanded split flow stream into a dilution flow stream to provide a diluted split flow stream, and to direct the diluted split flow stream to a low pressure detector.
Abstract:
An apparatus introduces a sample into a separation unit of a chromatography system with a mobile phase, including first and second mobile phase components. The apparatus includes first and second pump systems, and an injection unit. The first pump system provides the first mobile phase component, first and second portions of the first mobile phase component flowing through first and second branches, respectively. The second pump system provides the second mobile phase component, a first portion of the second mobile phase component flowing through a third branch. The injection unit receives a combined stream of the first portions of the first and second mobile phase components provided via the first and third branches, respectively, and injects the sample into the combined stream to form a sample-containing stream, which is subsequently combined with the second portion of the first mobile phase component to form a diluted sample-containing stream.
Abstract:
A separator (e.g. an impact centrifugal separator) is for use in collection of liquid portions of a bi-phasic flowstream in a supercritical fluid system. A separator chamber defines an interior space, surrounded by a spiral channel and that has an exit at a lower portion of the separator chamber. A flowstream director (e.g. an entry lube) focuses the flowstream so that the flowstream impacts a wail of the spiral channel at an angle that promotes coalescence of the liquid component. The spiral channel may promote further coalescence of the liquid portions within the constraining spiral channel after impact. A central director may be included in the interior space of the separator chamber to promote flow of the gaseous component toward the exit. A dripper may be included in fluid communication with the spiral channel, for example, in the exit and to direct the coalesced liquid into a collection vessel.
Abstract:
A device is provided in a supercritical fluid system, which uses a mobile phase output by a separation device, the mobile phase volumetrically expanding as it decompresses. The device includes a passive splitter and a shuttle valve. The passive splitter is configured to receive the mobile phase and to split the mobile phase into a primary flow stream and a split flow stream, where the primary flow stream is directed to a pressure maintenance device. The passive splitter is further configured to reduce pressure of the split flow stream, causing volumetric expansion of the split flow stream. The shuttle valve is configured to insert volumetric aliquots of the volumetrically expanded split flow stream into a dilution flow stream to provide a diluted split flow stream, and to direct the diluted split flow stream to a low pressure detector.
Abstract:
An apparatus introduces a sample into a separation unit of a chromatography system with a mobile phase, including first and second mobile phase components. The apparatus includes first and second pump systems, and an injection unit. The first pump system provides the first mobile phase component, first and second portions of the first mobile phase component flowing through first and second branches, respectively. The second pump system provides the second mobile phase component, a first portion of the second mobile phase component flowing through a third branch. The injection unit receives a combined stream of the first portions of the first and second mobile phase components provided via the first and third branches, respectively, and injects the sample into the combined stream to form a sample-containing stream, which is subsequently combined with the second portion of the first mobile phase component to form a diluted sample-containing stream.
Abstract:
A gas-liquid separator includes a fluid inlet, a shell including an inside surface enclosing an interior space, an outlet structure with fingers converging toward a longitudinal axis, and a dripper including a dripper tip. The fingers terminate at fingertips located proximate to an outside surface of the dripper. Gas exit ports are defined between adjacent fingers, and by the dripper. The gas-liquid separator defines a liquid flow path from the fluid inlet, along the inside surface, along one or more of the fingers, converging along the dripper outside surface, and to the dripper tip. The gas-liquid separator also defines a gas flow path from the fluid inlet, through the interior space, and through the gas exit ports. The gas-liquid separator may be utilized in fluid separation systems such as liquid chromatography or supercritical fluid chromatography/extraction systems.
Abstract:
A gas-liquid separator includes a fluid inlet, a shell including an inside surface enclosing an interior space, an outlet structure with fingers converging toward a longitudinal axis, and a dripper including a dripper tip. The fingers terminate at fingertips located proximate to an outside surface of the dripper. Gas exit ports are defined between adjacent fingers, and by the dripper. The gas-liquid separator defines a liquid flow path from the fluid inlet, along the inside surface, along one or more of the fingers, converging along the dripper outside surface, and to the dripper tip. The gas-liquid separator also defines a gas flow path from the fluid inlet, through the interior space, and through the gas exit ports. The gas-liquid separator may be utilized in fluid separation systems such as liquid chromatography or supercritical fluid chromatography/extraction systems.
Abstract:
A method and a system for introducing a sample into a mobile phase of a chromatography system is provided. The method includes initially directing the mobile phase directly into a separation unit of the chromatography system, bypassing a sample loop, the mobile phase including a combined solvent, metered from a pressurized first solvent and a second solvent; loading the sample into the sample loop, while the mobile phase continues to be directed directly into the separation unit; pressurizing the sample in the sample loop with the pressurized first solvent, while the mobile phase continues to be directed directly into the separation unit; and switching the sample loop into the mobile phase, thereby introducing the pressurized sample to the separation unit.
Abstract:
A separator (e.g. an impact centrifugal separator) is for use in collection of liquid portions of a bi-phasic flowstream in a supercritical fluid system. A separator chamber defines an interior space, surrounded by a spiral channel and that has an exit at a lower portion of the separator chamber. A flowstream director (e.g. an entry lube) focuses the flowstream so that the flowstream impacts a wail of the spiral channel at an angle that promotes coalescence of the liquid component. The spiral channel may promote further coalescence of the liquid portions within the constraining spiral channel after impact. A central director may be included in the interior space of the separator chamber to promote flow of the gaseous component toward the exit. A dripper may be included in fluid communication with the spiral channel, for example, in the exit and to direct the coalesced liquid into a collection vessel.
Abstract:
A method and a system for introducing a sample into a mobile phase of a chromatography system is provided. The method includes initially directing the mobile phase directly into a separation unit of the chromatography system, bypassing a sample loop, the mobile phase including a combined solvent, metered from a pressurized first solvent and a second solvent; loading the sample into the sample loop, while the mobile phase continues to be directed directly into the separation unit; pressurizing the sample in the sample loop with the pressurized first solvent, while the mobile phase continues to be directed directly into the separation unit; and switching the sample loop into the mobile phase, thereby introducing the pressurized sample to the separation unit.