Abstract:
Methods of passivating an adhesive via printing an ink onto a release liner, and adhesive articles or products made by the same are provided. An ink pattern is printed onto a release liner to form a pattern of features. The features are at least partially embedded in an adhesive layer such that when the release liner is peeled from the adhesive layer, the passivation features remain with the layer of adhesive to form selected areas having adjusted adhesive functionality. Articles including the passivated adhesive on a release liner are also disclosed.
Abstract:
A method for making an electronic assembly includes applying a conductive adhesive to a resist layer overlying a patterned conductive nanowire layer on a substrate and engaging an electrical contact of an electronic component with the conductive adhesive to provide an electrical connection between the electronic component and the conductive nanowire layer.
Abstract:
Methods of achieving precision registration in a roll to roll process for making patterned substrates by depositing first and second inks in a predetermined pattern, the predetermined pattern having fiducial marks and main pattern marks. One of these inks prints the fiducial marks onto a substrate while another ink prints main pattern marks on the same substrate such that the predetermined pattern bears a predictable spatial relationship to the pattern of fiducial marks. Consequently, even if the ink forming the predetermined pattern is invisible, or has such low contrast with the substrate that it is effectively invisible, or even has been dissolved away in a subsequent processing step, it is still possible to know where the predetermined pattern is by referring to the pattern of fiducial marks. Touch screen displays including patterned substrates prepared of the methods are also disclosed.
Abstract:
A method for making an electronic assembly includes applying a protective layer including an organosulfur compound to at least a portion of a patterned conductive interconnect circuit, wherein the conductive interconnect circuit overlies at least a portion of a conductive layer on a substrate, and wherein the conductive layer includes nanowires; and engaging an electrical contact of an electronic component with the protective layer to electrically connect the electronic component and the patterned conductive layer.
Abstract:
A composite article includes a conductive layer with nanowires on at least a portion of a flexible substrate, wherein the conductive layer has a conductive surface. A patterned layer of a low surface energy material is on a first region of the conductive surface. An overcoat layer free of conductive particulates is on a first portion of a second region of the conductive surface unoccupied by the patterned layer. A via is in a second portion of the second region of the conductive surface between an edge of the patterned layer of the low surface energy material and the overcoat layer. A conductive material is in the via to provide an electrical connection to the conductive surface.
Abstract:
Methods of passivating an adhesive via printing an ink onto a release liner, and adhesive articles or products made by the same are provided. An ink pattern is printed onto a release liner to form a pattern of features. The features are at least partially embedded in an adhesive layer such that when the release liner is peeled from the adhesive layer, the passivation features remain with the layer of adhesive to form selected areas having adjusted adhesive functionality. Articles including the passivated adhesive on a release liner are also disclosed.
Abstract:
An optical film having a first surface, an opposing second surface, and a thickness normal to the first and second surfaces is cut. Cutting the film forms a channel at least partially through the thickness of the film. A light control material is printed proximate to a surface of the film. The ink traverses through the channel by capillary motion.
Abstract:
Web-wound rolls with a web edge treatment by printable adhesive compositions and processes to make the same are provided. The web-wound rolls include a substrate web having at least two web edges. One or more quantities of adhesive are disposed and subsequent curing adjacent to one or both of the web edges. The substrate web is wound upon itself in multiple revolutions about a central core, and each revolution is held substantially separate from the next by the adhesive.
Abstract:
A composite article includes a conductive layer on at least a portion of a flexible substrate, wherein the conductive layer has a conductive surface. A patterned layer of a low surface energy material is on a first region of the conductive surface. An overcoat layer free of conductive particulates is on a first portion of a second region of the conductive surface unoccupied by the patterned layer. A via is in a second portion of the second region of the conductive surface between an edge of the patterned layer of the low surface energy material and the overcoat layer. A conductive material is in the via to provide an electrical connection to the conductive surface.
Abstract:
An electronic assembly includes a substrate having in a first zone a low contrast first conductive pattern; a high contrast fiducial mark in a second zone of the substrate different from the first zone, wherein the fiducial mark and the first conductive pattern are in registration; and a second conductive pattern aligned with the first conductive pattern.