Abstract:
Disclosed is a system for analyzing a bio chip using Gene Ontology(hereinafter referred to “GO”) and a method thereof. According to a preferred embodiment of the present invention, it is provided a system for analyzing a bio chip comprising: a GO(gene ontology) term assigning part for receiving a statistical clustering data obtained from empirical results of the bio chip, and assigning relevant GO terms to every gene contained in each cluster; a GO code converting part for converting the GO terms assigned by the GO term assigning part to the genes into GO codes, the GO code comprising a group of predetermined numbers; and a biological meaning extracting part for calculating pseudo distances between one of GO terms on GO tree structure contained in a predetermined group and the GO terms corresponding to the genes contained in the cluster, and calculating at least one of average pseudo distance or maximum pseudo distance of the calculated pseudo distances, and calculating at least one of average pseudo distances or maximum pseudo distances for all GO terms included on GO tree structure in the predetermined group and the GO terms corresponding to the genes contained in the cluster, and determining an optimum GO term matching with the cluster.
Abstract:
A digital delay locked loop for a synchronous semiconductor memory device reduces power consumption by disabling the stages of the delay locked loop that are not required for generating an internal clock signal that is synchronized with an external system clock signal. The delay locked loop includes a first synchronous delay line formed from a plurality of serially connected unit delayers, a second synchronous delay line formed from a second plurality of serially connected unit delayers, a plurality of phase detectors arranged in successive order to compare the external clock signal to the plurality of delayed clock signals and generate a plurality of enable signals, and a plurality of switches arranged in successive order to select a delayed clock signal from the second delay line as an internal clock signal. Each stage includes one of the unit delayers in the first delay line, one of the unit delayers in the second delay line, one of the phase detectors, and one of the switches. Each of the phase detectors generates a carry signal if the clock signal from its stage is synchronized with the system clock or if it is downstream from the stage that is synchronized. The carry signal from each stage is coupled to the next successive stage. Each of the stages has one or more operation cutting circuits to disable the stage responsive to an active carry signal from the previous stage. The operation cutting circuits can be included in the phase detectors and the unit delayers in each stage to disable inverters in the unit delayers and latches in the phase detectors to conserve power in stages that are not necessary for generating the internal clock signal.
Abstract:
An internal clock generator including a switching controller interposed between a digital delay locked loop and an externally generated clock signal. The switching controller reduces current consumptions starting from a next cycle when an external clock and an internal clock are in phase. Further, when the external clock and the internal clock are in phase, driving of the unnecessary elements is suppressed, thereby reducing the current consumption in the internal clock generator.
Abstract:
Provided is an apparatus for generating electricity required by an LNG carrier which stores LNG, which is obtained by liquefying natural gas to ultra low temperature in a gas field, in an LNG storage tank and carries the stored LNG. The apparatus includes: a reformer reforming boil-off gas occurring in the LNG storage tank and producing synthetic gas; and a fuel cell generating electricity through an electrochemical reaction of the synthetic gas produced by the reformer.
Abstract:
Provided is an apparatus for generating electricity required by an LNG carrier which stores LNG, which is obtained by liquefying natural gas to ultra low temperature in a gas field, in an LNG storage tank and carries the stored LNG. The apparatus includes: a reformer reforming boil-off gas occurring in the LNG storage tank and producing synthetic gas; and a fuel cell generating electricity through an electrochemical reaction of the synthetic gas produced by the reformer.
Abstract:
A tool holder includes: a shank portion gripped by a main shaft; a tool attachment portion having an insertion port into which a tool is inserted in a tip end surface thereof; a cover having a tubular wall that covers an outer periphery of the tool attachment portion and a bottom surface that covers the tip end surface of the tool attachment portion; a bearing provided between the tubular wall of the cover and the tool attachment portion; and a stopper that prevents the cover from co-rotating with the tool attachment portion. A through hole penetrated by the tool and an ejection port disposed on a periphery of the through hole in order to eject the coolant toward the tool are provided in the bottom surface of the cover.
Abstract:
A tool holder includes: a shank portion gripped by a main shaft; a tool attachment portion having an insertion port into which a tool is inserted in a tip end surface thereof; a cover having a tubular wall that covers an outer periphery of the tool attachment portion and a bottom surface that covers the tip end surface of the tool attachment portion; a bearing provided between the tubular wall of the cover and the tool attachment portion; and a stopper that prevents the cover from co-rotating with the tool attachment portion. A through hole penetrated by the tool and an ejection port disposed on a periphery of the through hole in order to eject the coolant toward the tool are provided in the bottom surface of the cover.
Abstract:
Disclosed is a system for analyzing a bio chip using Gene Ontology (hereinafter referred to “GO”) and a method thereof. According to a preferred embodiment of the present invention, it is provided a system for analyzing a bio chip comprising: a GO (gene ontology) term assigning part for receiving a statistical clustering data obtained from empirical results of the bio chip, and assigning relevant GO terms to every gene contained in each cluster; a GO code converting part for converting the GO terms assigned by the GO term assigning part to the genes into GO codes, the GO code comprising a group of predetermined numbers; and a biological meaning extracting part for calculating pseudo distances between one of GO terms on GO tree structure contained in a predetermined group and the GO terms corresponding to the genes contained in the cluster, and calculating at least one of average pseudo distance or maximum pseudo distance of the calculated pseudo distances, and calculating at least one of average pseudo distances or maximum pseudo distances for all GO terms included on GO tree structure in the predetermined group and the GO terms corresponding to the genes contained in the cluster, and determining an optimum GO term matching with the cluster.
Abstract:
A portable heater comprises a housing, a heating element, and a fuel supply. The fuel supply is preferably a liquid gas type wherein a valve assembly meters the gas to the heating element. A regulator is used to regulate flow of gas from the fuel source, and a connector assembly rotatably interconnects the regulator to the valve assembly. This rotatable connection allows the fuel source, typically in the form of a gas bottle, to be rotated away from the housing for easier removal and replacement of the gas bottle. Rotation of the regulator can be supported by use of a bracket which is attached to the regulator.
Abstract:
Disclosed are a dimethyl ether (DME)-floating, production, storage and offloading (FPSO) system that can be used in offshore oil fields or stranded gas fields and a method for producing dimethyl ether using the same. More particularly, the disclosure relates to a DME-FPSO system capable of producing dimethyl ether from gas extracted from stranded gas fields or from associated gas extracted from oil fields, which includes a reforming reactor and a dimethyl ether reactor equipped offshore, and a method for producing the same.