Abstract:
Natural gas is produced when LNG that is contained in an insulated LNG cargo tank(s) of a non-self-propelled LNG carrier (i.e., a barge) evaporates as a result of heat leakage through the walls of the insulated cargo tank(s). The natural gas is transferred from the barge to a tugboat or a towboat that is equipped with natural gas burning engines through a flexible gas transfer assembly so that the tugboat is powered by the natural gas fuel. The pressure in the cargo tank(s) on the barge is, therefore, effectively managed to prevent or substantially reduce the buildup of pressure within the LNG cargo tank(s). The LNG can then be contained within the LNG cargo tank(s) for an appropriate period of time and can be delivered at an appropriate and acceptable equilibrium pressure and temperature.
Abstract:
Provided is a liquefied gas transfer device for reducing boil-off gas. The liquefied gas transfer device for reducing boil-off gas comprises: at least one transfer pipe formed in a vertical direction inside a quay for storing liquefied gas so as to transfer the liquefied gas; a branch pipe which is branched from a lower part of the transfer pipe to one side of the transfer pipe, and which has an end part opened toward a bottom surface of the quay; a valve which is connected to the branch pipe and/or the transfer pipe, and which opens and closes the branch pipe or the transfer pipe so as to move the liquefied gas from the transfer pipe to the branch pipe; and a resistance member disposed inside the branch pipe so as to interrupt the flow of the liquefied gas.
Abstract:
A method for creating a supply of natural gas fuel for a combustion engine, comprising: obtaining boil-off gas from an LNG storage tank containing liquified natural gas, compressing the boil-off gas in a compression stage consisting of a labyrinth-sealed piston-compressor or a piston-compressor sealed by piston rings, and compressing the natural gas in a compression stage consisting of a piston-compressor sealed by piston rings or a labyrinth-sealed piston-compressor, compressing the natural gas to a pressure of between 100 Bar and 500 Bar, and making the natural gas available at an outlet, wherein at least one of the piston-compressors has a bypass, and that natural gas is returned via the at least one bypass such that the natural gas at the outlet is at a required target pressure (Psoll).
Abstract:
A system for compressing a cryogenic gas, particularly a hydrocarbon gas, has a compressor for compressing the gas and a line arrangement, which passes the gas to the intake side of the compressor and passes the compressed gas to a subsequent device for use. The line arrangement has a bypass and the compressed gas can be passed back to the intake side of the compressor via the bypass. An expander is disposed in the bypass, for re-cooling the gas that flows through the bypass. A method regulates a system for compressing a cryogenic gas, particularly a hydrocarbon gas that occurs during storage of a cryogenic liquid.
Abstract:
A marine vessel, and a system and method of using the marine vessel, to facilitate the introduction of bulk liquid commodities, such as LNG, into the established and extensive worldwide intermodal transportation system, which is based on containerized shipments. The marine vessel is a specialized vessel, of either ship or barge form, that is capable of holding a large number of ISO-sized intermodal LNG tanks and is configured so as to have at one and the same time characteristics of both a tanker vessel (e.g., a gas carrier) and a container vessel. The intermodal LNG tanks connect to a piping system of the marine vessel and are thereby interconnected in such a manner that allows the interconnected intermodal LNG tanks to behave as if they constitute a typical LNG vessel bulk liquid tank to facilitate efficient loading at a typical marine LNG terminal. The containerized intermodal LNG tanks are capable of discharging liquids to a marine terminal as if in a bulk mode, or of being disconnected from the common interconnection system to allow lift-off discharge of the intermodal LNG tanks at a typical cargo container port so that the intermodal LNG tanks can enter the existing intermodal transportation system for further distribution to the end user by other marine vessels, over-the-road truck, or by rail.
Abstract:
The present invention provides a method and apparatus for reacting a natural oil with a short chain alcohol in the presence of alkaline catalyst, in which a mixture of natural oil, short chain alcohol and alkaline catalyst is fed in one direction along a pipe reactor under transitional or turbulent conditions, so that the reactants are mixed in a direction normal to the flow direction to a greater degree than in a direction parallel to the flow direction or so that the reactants are mixed in a direction normal to the flow direction, such that the time taken for 90% of the elements of fluid to pass through the reactor is within 20% of the mean residence time of reactant in the reactor. There is also provided a ship, comprising means for storing a raw material used in the synthesis of biodiesel, a plant for the synthesis of biodiesel and means for storing the biodiesel synthesised.
Abstract:
A gas supply arrangement of a marine vessel being adapted to carry liquefied gas in its cargo tank having an ullage space section and a liquid phase section, which arrangement utilizes the gas as fuel to provide power for the vessel, the arrangement comprising a first gas supply line provided for processing the natural boil-off gas formed in the cargo tank, a second gas supply line which connects the cargo tank and the gas main supply line and which is provided with at least a pump for raising the pressure of the liquid gas and for pumping it forward. The second gas supply line is provided with a gas reservoir having an ullage space section and liquid phase section, and that the arrangement is provided with a first duct section of the second gas supply line connecting the liquid phase section of the cargo tank and the liquid phase section of the gas reservoir, and being provided with the pump, and that the arrangement is additionally provided with a return line connecting the liquid phase section of the reservoir and the cargo tank being provided with a control valve for controllable returning liquid gas back into the cargo tank.
Abstract:
Disclosed herein is an apparatus and method for liquefied natural gas (LNG) carrier propulsion. In the apparatus and method, the propulsion of an LNG carrier is done by only a single main diesel engine and has construction to promptly cope with emergencies caused by malfunction of the main diesel engine. The propulsion apparatus for an LNG carrier comprising a boil-off gas re-liquefaction apparatus for re-liquefying boil-off gas generated in LNG storage tanks to return re-liquefied boil-off gas back to the LNG storage tank comprises a single main diesel engine, a propulsion shaft separably connected to the main diesel engine, and an electric motor for propulsion separably connected to the propulsion shaft and supplied with power intended for operation of the boil-off gas re-liquefaction apparatus.
Abstract:
A corvette ship-type equipment system includes standard-equipment segments, such as an energy generator, an energy distributor, a drive and an automation segment, and a hull which is adapted to the size and specific requirements on the corvette ship-type equipment system. In order to construct standard equipment-segments for a corvette ship-type equipment system which is technically and constructively simple and economical in terms of cost, at least one of the standard-equipment segments, such as the energy generator and/or the energy distributor and/or the drive and/or the automation segment is constructed from standard units or components which correspond to the requirements of the corvette ship-type equipment system and which are arranged in the hull of the boat and which can be built into the hull of the boat according to the different boat or ship-type equipment systems.
Abstract:
The invention relates to a high-speed, sea-going ship comprising a double hull and a water-jet drive, the latter consisting of at least one pump assembly for generating the water-jet and at least one drive motor for the pump assembly. According to the invention, the pump assembly and its drive motor are located outside the stern area of the ship by using, in part, the space in the double hull.