Abstract:
A trench structure that in one embodiment includes a trench present in a substrate, and a dielectric layer that is continuously present on the sidewalls and base of the trench. The dielectric layer has a dielectric constant that is greater than 30. The dielectric layer is composed of tetragonal phase hafnium oxide with silicon present in the grain boundaries of the tetragonal phase hafnium oxide in an amount ranging from 3 wt. % to 20 wt. %.
Abstract:
A complementary metal oxide semiconductor (CMOS) structure including a scaled n-channel field effect transistor (nFET) and a scaled p-channel field transistor (pFET) which do not exhibit an increased threshold voltage and reduced mobility during operation is provided Such a structure is provided by forming a plasma nitrided, nFET threshold voltage adjusted high k gate dielectric layer portion within an nFET gate stack, and forming at least a pFET threshold voltage adjusted high k gate dielectric layer portion within a pFET gate stack. In some embodiments, the pFET threshold voltage adjusted high k gate dielectric layer portion in the pFET gate stack is also plasma nitrided. The plasma nitrided, nFET threshold voltage adjusted high k gate dielectric layer portion includes up to 15 atomic % N2 and an nFET threshold voltage adjusted species located therein, while the plasma nitrided, pFET threshold voltage adjusted high k gate dielectric layer portion includes up to 15 atomic % N2 and a pFET threshold voltage adjusted species located therein.
Abstract:
A trench structure that in one embodiment includes a trench present in a substrate, and a dielectric layer that is continuously present on the sidewalls and base of the trench. The dielectric layer has a dielectric constant that is greater than 30. The dielectric layer is composed of tetragonal phase hafnium oxide with silicon present in the grain boundaries of the tetragonal phase hafnium oxide in an amount ranging from 3 wt. % to 20 wt. %.
Abstract:
A semiconductor device including a germanium containing substrate including a gate structure on a channel region of the semiconductor substrate. The gate structure may include a silicon oxide layer that is in direct contact with an upper surface of the germanium containing substrate, at least one high-k gate dielectric layer in direct contact with the silicon oxide layer, and at least one gate conductor in direct contact with the high-k gate dielectric layer. The interface between the silicon oxide layer and the upper surface of the germanium containing substrate is substantially free of germanium oxide. A source region and a drain region may be present on opposing sides of the channel region.
Abstract:
A high dielectric constant (high-k) gate dielectric for a field effect transistor (FET) and a high-k tunnel dielectric for a non-volatile random access memory (NVRAM) device are simultaneously formed on a semiconductor substrate. A stack of at least one conductive material layer, a control gate dielectric layer, and a disposable material layer is subsequently deposited and lithographically patterned. A planarization dielectric layer is deposited and patterned, and disposable material portions are removed. A remaining portion of the control gate dielectric layer is preserved in the NVRAM device region, but is removed in the FET region. A conductive material is deposited in gate cavities to provide a control gate for the NVRAM device and a gate portion for the FET. Alternately, the control gate dielectric layer may replaced with a high-k control gate dielectric in the NVRAM device region.
Abstract:
A semiconductor device includes: a semiconductor substrate; a PFET formed on the substrate, the PFET includes a SiGe layer disposed on the substrate, a high-K dielectric layer disposed on the SiGe layer, a first metallic layer disposed on the high-k dielectric layer, a first intermediate layer disposed on the first metallic layer, a second metallic layer disposed on the first intermediate layer, a second intermediate layer disposed on the second metallic layer, and a third metallic layer disposed on the second intermediate layer; an NFET formed on the substrate, the NFET includes the high-k dielectric layer, the high-k dielectric layer being disposed on the substrate, the second intermediate layer, the second intermediate layer being disposed on the high-k dielectric layer, and the third metallic layer, the third metallic layer being disposed on the second intermediate layer. Alternatively, the first metallic layer is omitted. A method to fabricate the device includes providing SiO2 and alpha-silicon layers or a dBARC layer.
Abstract:
CMOS circuit structures are disclosed with the PFET and NFET devices having high-k dielectric layers consisting of the same gate insulator material, and metal gate layers consisting of the same gate metal material. The PFET device has a “p” interface control layer which is capable of shifting the effective-workfunction of the gate in the p-direction. In a representative embodiment of the invention the “p” interface control layer is aluminum oxide. The NFET device may have an “n” interface control layer. The materials of the “p” and “n” interface control layers are differing materials. The “p” and “n” interface control layers are positioned to the opposite sides of their corresponding high-k dielectric layers. Methods for fabricating the CMOS circuit structures with the oppositely positioned “p” and “n” interface control layers are also disclosed.
Abstract:
Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
Abstract:
A method of simultaneously fabricating n-type and p type field effect transistors can include forming a first replacement gate having a first gate metal layer adjacent a gate dielectric layer in a first opening in a dielectric region overlying a first active semiconductor region. A second replacement gate including a second gate metal layer can be formed adjacent a gate dielectric layer in a second opening in a dielectric region overlying a second active semiconductor region. At least portions of the first and second gate metal layers can be stacked in a direction of their thicknesses and separated from each other by at least a barrier metal layer. The NFET resulting from the method can include the first active semiconductor region, the source/drain regions therein and the first replacement gate, and the PFET resulting from the method can include the second active semiconductor region, source/drain regions therein and the second replacement gate.
Abstract:
Replacement gate work function material stacks are provided, which provides a work function about the energy level of the conduction band of silicon. After removal of a disposable gate stack, a gate dielectric layer is formed in a gate cavity. A metallic compound layer including a metal and a non-metal element is deposited directly on the gate dielectric layer. At least one barrier layer and a conductive material layer is deposited and planarized to fill the gate cavity. The metallic compound layer includes a material having a work function about 4.4 eV or less, and can include a material selected from tantalum carbide and a hafnium-silicon alloy. Thus, the metallic compound layer can provide a work function that enhances the performance of an n-type field effect transistor employing a silicon channel.