Abstract:
The present invention provides a vulcanizable composition containing a specific hydrogenated nitrile rubber, at least one cross-linking agent and carbon nanotubes, a process for preparing such composition and the use thereof for preparing vulcanizates. Said vulcanizates exhibit excellent heat performance, oil resistance and mechanical strength.
Abstract:
The present invention provides a novel process for preparing hydrogenated nitrile rubbers comprising subjecting nitrile rubbers in a spinning disk reactor to hydrogenation. The present process is less demanding with regard to its reaction conditions, like e.g. the hydrogen pressure to be applied, compared to known processes and significantly reduces the cost of the hydrogenation process and in particular the equipment cost.
Abstract:
The present invention relates to hydrogenated nitrite rubber polymers having lower molecular weights and narrower molecular weight distributions than those known in the art. The present invention is also related to shaped articles containing hydrogenated nitrile rubber polymers having lower molecular weights and narrower molecular weight distributions than those known in the art.
Abstract:
The present invention relates to a polymer compound containing at least one carboxylated nitrile rubber polymer, that is optionally hydrogenated, at least one organo functional silane compound having at least one epoxy, amine, isocyanate, or any other functional group capable of forming a derivative of a carboxyl group, at least one silane group, and at least one filler, a method of inducing curing in a compound containing at least one carboxylated nitrile rubber polymer, that is optionally hydrogenated, by addition of at least one organo functional silane compound having at least one epoxy, amine, isocyanate, or any other functional group capable of forming a derivative of a carboxyl group, at least one silane group, and at least one filler and subsequent curing.
Abstract:
The present invention relates to a polymer composite containing at least one carboxylated nitrile rubber polymer, that is optionally hydrogenated, at least one basic compound, at least one polyhalogenated hydrocarbon, optionally at least one filler and optionally at least one cross-linking agent, a process for preparing said polymer composite wherein at least one carboxylated nitrile rubber polymer, that is optionally hydrogenated, at least one basic compound, at least one polyhalogenated hydrocarbon, optionally at least one filler and optionally at least one cross-linking agent are mixed and a shaped article containing diester bridges formed by reaction of at least one carboxylated nitrile rubber polymer, that is optionally hydrogenated, at least one basic compound and at least one polyhalogenated hydrocarbon.
Abstract:
The present invention relates to nitrile rubber polymers having lower molecular weights and narrower molecular weight distributions than those known in the art. The present invention also relates to a process for the manufacture of said nitrile rubber and the use of said nitrile rubber for the manufacture of shaped articles.
Abstract:
An elastomeric composition containing a rubber polymer, an acid acceptor, and a silane-modified needle-like/acircular mineral additive. Compositions according to the present invention have superior heat resistance, compression set resistance, and improved processability (lower compound Mooney) compared to known rubber compositions.
Abstract:
This invention relates to a process for the hydrogenation of diene-based copolymers in the presence of catalysts on specific carrier materials containing at least one hyper-branched polymer.
Abstract:
The present invention relates to an elastomer rubber composition containing a carboxylated rubber polymer and a fluorinated additive. The present invention is also directed to an elastomer composition containing a hydrogenated carboxylated nitrile rubber and a fluorinated additive.
Abstract:
The present invention relates to a multistage process including at least two steps for making a heat and oil resistant preroxide-cured thermoplastic vulcanizates (TPV) based on hydrogenated carboxiated nitrile butadiene rubber (HXNBR) and at least one polyamide. TPV's according to the present invention have improved properties and morphology over known TPV's prepared in single-stage processes.